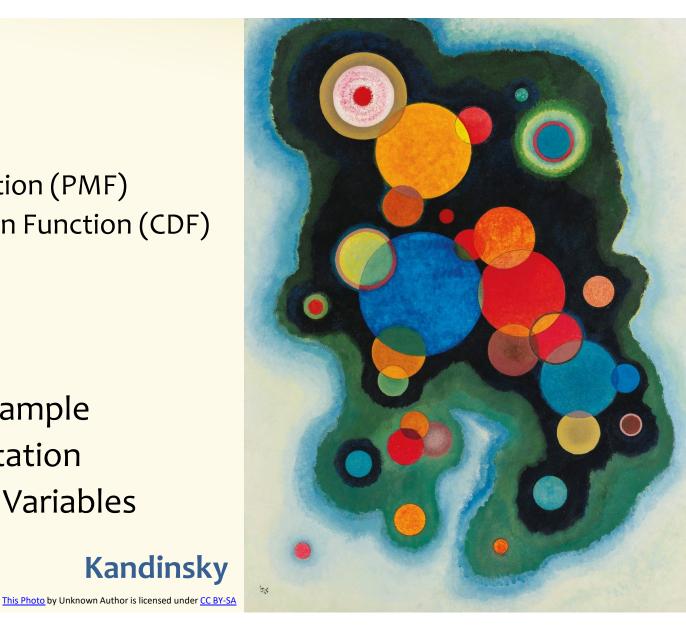
CSE 312 Foundations of Computing II

1

Lecture 9: Linearity of Expectation


Last Class:

- Random Variables ٠
- Probability Mass Function (PMF) •
- Cumulative Distribution Function (CDF) •
- Expectation •

Today:

- An Expectation Example
- Linearity of Expectation
- Indicator Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

 $\Sigma_{x \in X(\Omega)} P(X = x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

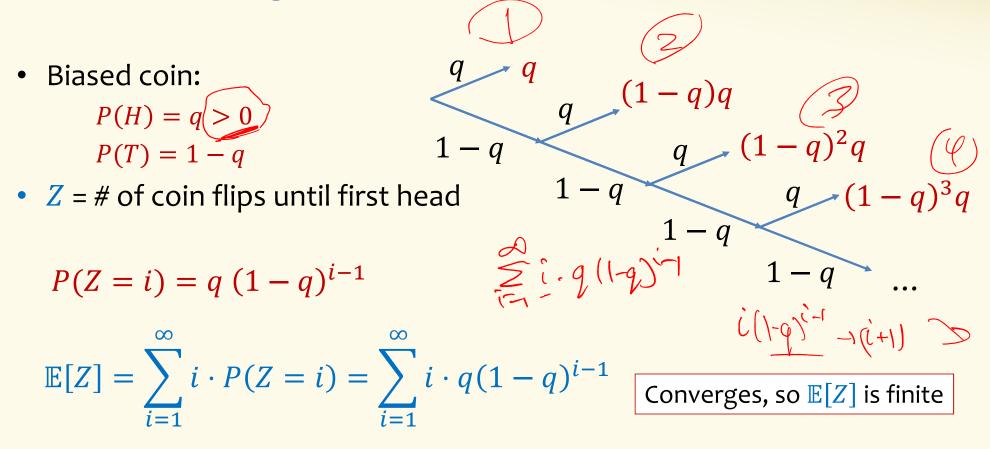
$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \le x$ $F_X(x) = P(X \le x)$

 $\sum_{x \in \Omega_X} p_X(x) = 1$

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of X is


$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example – Flipping a biased coin until you see heads

Can calculate this directly but...

Example – Flipping a biased coin until you see heads

- **Biased coin:** q • P(H) = q > 0 $(1 - q)^2 q$ - q P(T) = 1 - q-q
- Z = # of coin flips until first head

Another view: If you get heads first try you get Z = 1;

If you get tails you have used one try and have the same experiment left

$$\mathbb{E}[Z] = q + (1 - q)(\mathbb{E}(Z) + 1)$$

So
$$q \cdot \mathbb{E}[Z] = q + (1 - q) = 1$$

Implies
$$\mathbb{E}[Z] = 1/q$$

1-q

1 - q

7

Expected Value of *X***= # of heads**

Each coin shows up heads half the time.

P(HT) = P(TH) = 0.25 P(HH) = P(TT) = 0.25 $\mathbb{E}(X) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$

P(HT) = P(TH) = 0.5P(HH) = P(TT) = 0

$$E(X) = 1 \cdot 1 = 1$$

$$P(HT) = P(TH) = 0.1$$

 $\mathbb{E}(X) = 1 \cdot 0.2 + 2 \cdot 0.4 =$ ⁸

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $\mathbb{E}[X] = 3$.
- Every day your friend catches Y fish, with $\mathbb{E}[Y] = 7$.

How many fish do the two of you bring in (Z = X + Y) on an average day?

 $\mathbb{E}[Z] = \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] = 3 + 7 = 10$

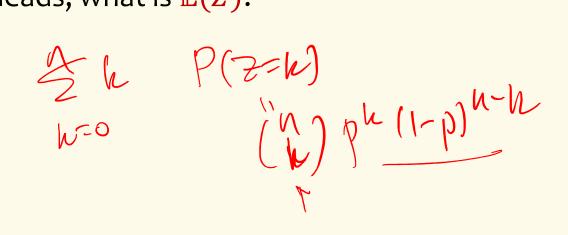
You can sell each fish for \$5 at a store, but together you need to pay \$20 in rent. How much profit do you expect to make? $\mathbb{E}[5Z - 20] = 5\mathbb{E}[Z] - 20 = 5 \times 10 - 20 = 30$

Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent) $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

Or, more generally: For any random variables X_1, \dots, X_n , $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$ Because: $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[(X_1 + \dots + X_{n-1}) + X_n]$ $= \mathbb{E}[X_1 + \dots + X_{n-1}] + \mathbb{E}[X_n] = \dots$

Linearity of Expectation – Proof


Theorem. For any two random variables X and Y (X, Y do not need to be independent)

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

 $\mathbb{E}[X + Y] = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$ $= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$ $= \mathbb{E}[X] + \mathbb{E}[Y]$

Example – Coin Tosses

We flip n coins, each one heads with probability pZ is the number of heads, what is $\mathbb{E}(Z)$?

Example – Coin Tosses – The brute force method

We flip *n* coins, each one heads with probability *p*, *Z* is the number of heads, what is $\mathbb{E}[Z]$?

 $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=1}^{\infty} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

 $\frac{n}{1}$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np \left(p + (1-p) \right)^{n-1} = np \cdot 1 = np$$

13

Computing complicated expectations

Often boils down to the following three steps:

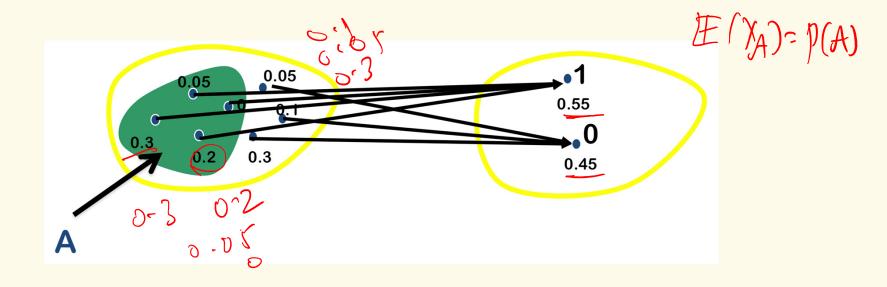
<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

• LOE: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

• <u>Conquer</u>: Compute the expectation of each X_i


Often, X_i are indicator (0/1) random variables.

Indicator random variables

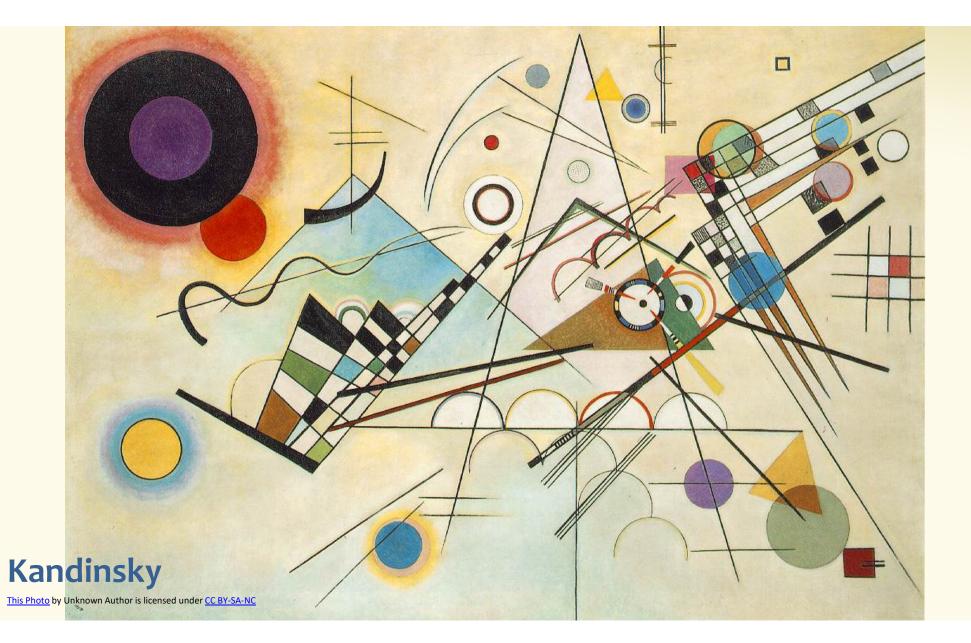
For any event A, can define the indicator random variable X_A for A

 $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases}$

 $P(X_A = 1) = P(A)$ $P(X_A = 0) = 1 - P(A)$

Example – Coin Tosses

We flip n coins, each one heads with probability pZ is the number of heads, what is $\mathbb{E}[Z]$?


- $X_i = \begin{cases} 1, i^{\text{th}} \text{ coin flip is heads} \\ 0, i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$

 $P(X_i = 1) = p$ $P(X_i = 0) = 1 - p$

$$\mathbb{E}[X_i] = p \cdot 1 + (1-p) \cdot 0 = p$$

Example: Returning Homeworks

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose</u>: What is X_i ?

 $X_i = 1$ iff *i*th student gets own HW back

LOE: $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$

<u>Conquer:</u> What is $\mathbb{E}[X_i]$? $(A, \frac{1}{n})B, \frac{1}{n-1}C, \frac{1}{2}$

Poll: pollev.com/paulbeame028 18

Pairs with the same birthday

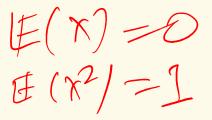
• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve **pairs** of students (i, j) for $i \neq j$ $X_{ij} = 1$ iff students *i* and *j* have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Linearity of Expectation – Even stronger

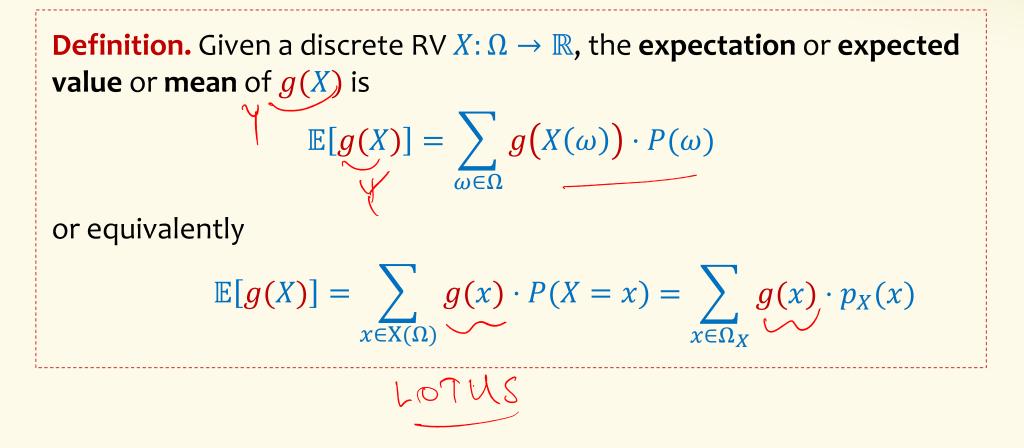
Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \cdots + a_nX_n] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n].$


Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

20

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$


E.g., $X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of g(X)

