CSE 312 Foundations of Computing II

1

Lecture 10: Variance and Independence of RVs

Recap Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$,

$$
\mathbb{E}[a_1X_1 + \dots + a_nX_n] = a_1\mathbb{E}[X_1] + \dots + a_n\mathbb{E}[X_n].
$$

For any event A , can define the indicator random variable X for A

1 if event A occurs $X_A = \{$ 0 if event A does not occur $E(X+1) = 1 - P(A) = P(A)$

Recap Linearity is special!

In general
$$
\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))
$$

E.g., $X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$ −1 with prob 1/2

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Recap Expected Value of $g(X)$

Definition. Given a discrete RV X: Ω → ℝ, the expectation or expected **value** or **mean** of $Y = g(X)$ is

$$
\mathbb{E}[Y] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[Y] = \sum_{x \in X(\Omega)} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)
$$

Also known as **LOTUS**: "Law of the unconscious statistician

(nothing special going on in the discrete case)

Example: Expectation of $g(X)$

Suppose we rolled a fair, 6-sided die in a game.

 \bullet Let X be the result of the dice roll.

You will win the cube of the number rolled in dollars, times 10. What are your expected winnings? \bigcirc $(\times) = |c \times^3$ $E[10X^{3}] = \sum_{x \in X(X)} \delta^{(x)} \cdot \frac{\rho(x)}{\sqrt{x}}$
 $\int_{C} E(x^{3}) dx = \sum_{x \in X(X)} \delta^{(x)} \cdot \frac{\rho(x)}{\sqrt{x}}$ 10 $\bigg\}$ $k=1$ 6 k^3 . 1 6

 $C\in \{1, 1/6\}$

 $P(X=C) = \frac{1}{C}$

Agenda

- Variance <
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Expected Value of $X = #$ **of heads**

Each coin shows up heads half the time, but very different joint behaviors!

Two Games

$$
2\frac{1}{3} - 1\frac{2}{3} = c
$$

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$
W_1
$$
 = payoff in a round of Game 1
\n $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

$$
\mathbb{E}[W_1]=0
$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

$$
W_2
$$
 = payoff in a round of Game 2
\n $P(W_2 = 10) = \frac{1}{3}, P(W_2 = -5) = \frac{2}{3}$

Which game would you rather play?

Somehow, Game 2 has higher volatility / exposure!

Same expectation, but clearly a very different distribution. We want to capture the difference – New concept: **Variance**

New quantity (random variable): How far from the expectation? $\Delta(W_1) = W_1 - \mathbb{E}[W_1]$

$$
\mathbb{E}[\Delta(W_1)] = \mathbb{E}[W_1 - \mathbb{E}[W_1]]
$$

= $\mathbb{E}[W_1] - \mathbb{E}[\mathbb{E}[W_1]]$
= $\mathbb{E}[W_1] - \mathbb{E}[W_1]$
= 0

A better quantity (random variable): How far from the expectation? $\Delta(W_1) = (W_1 - \mathbb{E}[W_1])^2$ $\mathbb{E}[\Delta(W_1)] = \mathbb{E}[(W_1 - \mathbb{E}[W_1])^2]$ 2 $9(x) = 2$ $\mathscr{W}\hspace{-0.02cm}\mathscr{A} \mathscr{W}_1) = 1) =$ 2 1 3 = $\frac{1}{3} \cdot 1 +$ $\frac{1}{3} \cdot 4$ 1 $P(\Delta(W_1) = 4) =$ 3

 $= 2$

A better quantity (random variable): How far from the expectation? $\Delta(W_2) = (W_2 - \mathbb{E}[W_2])^2$ $\mathbb{P}(\Delta(W_2) = 25) =$ 2 3 $\mathbb{P}(\Delta(W_2) = 100) =$ 1 3 $\mathbb{E}[\Delta(W_2)] = \mathbb{E}[(W_2 - \mathbb{E}[W_2])^2]$ = 2 $\frac{1}{3} \cdot 25 +$ 1 $\frac{1}{3} \cdot 100$ $= 50$ Poll: pollev.com/stefano tessaro617 $A. 0$ B. 20/3 C. 50 D. 2500

We say that W_2 has **"higher variance"** than W_1 .

Variance

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

 $Var(X) = ? (x - E(X))$

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

 $Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^2$

$$
= \frac{1}{6}[(1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (4-3.5)^2 + (5-3.5)^2 + (6-3.5)^2]
$$

$$
= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \dots
$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

Definition. The **variance** of a (discrete) RV is

 $Var(X) = E[(X - E[X])^{2}] = \sum_{x} p_{x}(x) \cdot (x - E[X])^{2}$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = E[X^2] - E[X]^2$

Variance

Proof: $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ $= \mathbb{E}[X^2 = \widehat{\mathcal{Z}} \mathbb{E}[X] \cdot X + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - 2 \mathbb{E}[X] \mathbb{E}[X] + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2$ (linearity of expectation!) Recall $\mathbb{E}[X]$ is a **constant** $\mathbb{E}[X^2]$ and $\mathbb{E}[X]^2$ are different !

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \cdots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}[X] =$ 21 $\overline{6}$
- $\mathbb{E}[X^2] = \frac{91}{6}$ $\overline{6}$

$$
Var(X) = E[X^2] - E[X]^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677
$$

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with $P(A) = p$ so

$$
\mathbb{E}[X_A] = P(A) = \boxed{p}
$$

Since X_A only takes on values 0 and 1, we always have $|X_A^2 = X_A$ so

 $Var(X_A) = E[X_A^2] - E[X_A]^2 = E[X_A] - E[X_A]^2 = p - p^2 = p(1-p)$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Proof by counter-example:

- Let X be a r.v. with pmf $P(X = 1) = P(X = -1) = 1/2$ – What is $E[X]$ and $Var(X)$? $E[X]$ $\overline{U_{71}}(x)$
- Let $Y = -X$
	- What is $E[Y]$ and $Var(Y)$?

$$
-E(X) = E(Y) = c
$$

$$
Var(Z) = C
$$

$$
P(X+Y=c) = (
$$

 C

What is $Var(X + Y)$?

Brain Break

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables X, Y are (mutually) independent if for all x, y , $98-x)027-87$ $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are (mutually) independent if for all $x_1, ..., x_n$, $P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in *n* independent coin flips of the same coin. Let $Y = X \text{ mod } 2$ be the parity (even/odd) of X. Are X and Y independent?

$$
\begin{array}{ccc}\n\varphi(x) = x, & \frac{y}{2} = c \\
\varphi(x) = 2, & \frac{1}{2} \\
\frac{y}{2} = 2, & \frac{
$$

A. Yes B. No

Example

Make 2*n* independent coin flips of the same coin.

Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are X and Y independent?

Poll: pollev.com/stefanotessaro617

A. Yes B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $Var(X + Y) = Var(X) + Var(Y)$

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $Var | >$ $i=1$ \overline{n} X_i = \sum_i i \overline{n} $Var(X_i)$

$(Not Covered)$ Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof
\nLet
$$
x_i, y_i, i = 1, 2
$$
, ...be the possible values of X, Y.
\n
$$
\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)
$$
\n
$$
= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)
$$
\n
$$
= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)
$$
\n
$$
= \mathbb{E}[X] \cdot \mathbb{E}[Y]
$$
\nNote: MCFB is a real, so that $\mathbb{E}[Y^2]$ (E[1])

Note: *NOT* true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

(Not Covered) Proof of $Var(X + Y) = Var(X) + Var(Y)$

Theorem. If X, Y independent, $Var(X + Y) = Var(X) + Var(Y)$

Proof

 $Var(X + Y)$ $= \mathbb{E}[(X+Y)^2] - (\mathbb{E}[X+Y])^2$ $= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2$ $= \mathbb{E}[X^2] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^2)$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2 + \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$ $= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$ $V = Var(X) + Var(Y)$ equal by independence **linearity**

Example – Coin Tosses

We flip *n* independent coins, each one heads with probability *p*

- $X_i = \{$ 1, i th outcome is heads 0, i th outcome is tails.
- $-Z =$ number of heads

Fact. $Z = \sum_{i=1}^n X_i$

$$
P(X_i = 1) = p P(X_i = 0) = 1 - p
$$

What is $E[Z]$? What is $Var(Z)$?

$$
P(Z=k) = {n \choose k} p^k (1-p)^{n-k}
$$

Note: $X_1, ..., X_n$ are mutually independent! [Verify it formally!] $Var(Z) = \sum Var(X_i) = n \cdot p(1-p)$ Note Var $(X_i) = p(1-p)$ $i=1$ \overline{n}