CSE 312 Foundations of Computing II

Lecture 10: Variance and Independence of RVs

Recap Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right)
$$

For any event A, can define the indicator random variable X for A

$$
X_{A}= \begin{cases}1 & \text { if event } A \text { occurs } \\ 0 & \text { if event } A \text { does not occur }\end{cases}
$$

$$
\begin{aligned}
& P\left(X_{A}=1\right)=P(A) \\
& P\left(X_{A}=0\right)=1-P(A)
\end{aligned}
$$

Recap Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$

How DO we compute $\mathbb{E}[g(X)]$?

Recap Expected Value of $g(X)$

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $Y=g(X)$ is

$$
\mathbb{E}[Y]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[Y]=\sum_{x \in \mathrm{X}(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician
(nothing special going on in the discrete case)

Example: Expectation of $g(X)$

Suppose we rolled a fair, 6 -sided die in a game.

- Let X be the result of the dice roll.

You will win the cube of the number rolled in dollars, times 10. What is your expected winnings?
$\mathbb{E}\left[10 X^{3}\right]=$

$$
10 \sum_{k=1}^{6} k^{3} \cdot \frac{1}{6}
$$

Agenda

- Variance -
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

Game 2: In every round, you win $\$ 10$ with probability 1/3, lose $\$ 5$ with probability $2 / 3$.

$$
W_{2}=\text { payoff in a round of Game } 2
$$

$$
P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}
$$

Which game would you rather play?

Somehow, Game 2 has higher volatility / exposure!
$P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}$

Same expectation, but clearly a very different distribution.
We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=W_{1}-\mathbb{E}\left[W_{1}\right]
$$

$$
\begin{aligned}
\mathbb{E}\left[\Delta\left(W_{1}\right)\right] & =\mathbb{E}\left[W_{1}-\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[W_{1}\right] \\
& =0
\end{aligned}
$$

Variance (Intuition, Better Try)

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \Delta\left(W_{1}\right)=\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2} \\
& P\left(\Delta\left(W_{1}\right)=1\right)=\frac{2}{3} \\
& P\left(\Delta\left(W_{1}\right)=4\right)=\frac{1}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[\Delta\left(W_{1}\right)\right]=\mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right]
$$

$$
\begin{aligned}
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& =2
\end{aligned}
$$

Variance (Intuition, Better Try)

A better quantity (random variable): How far from the expectation?

$$
\begin{array}{rlr}
\Delta\left(W_{2}\right)=\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2} & \mathbb{E}\left[\Delta\left(W_{2}\right)\right] & =\mathbb{E}\left[\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2}\right] \\
\mathbb{P}\left(\Delta\left(W_{2}\right)=25\right)=\frac{2}{3} & & =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
\mathbb{P}\left(\Delta\left(W_{2}\right)=100\right)=\frac{1}{3} & & =50
\end{array}
$$

tessaro617
A. 0
B. $20 / 3$
C. 50
D. 2500

We say that W_{2} has "higher variance" than W_{1}.

Variance

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

Recall $\mathbb{E}[X]$ is a constant, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1

X fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=?$

Variance - Example 1

X fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation
$\sigma^{2}=5.83$

$$
\sigma^{2}=10
$$

$$
\sigma^{2}=15
$$

$$
\sigma^{2}=19.7
$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X\rceil)^{2}\right] \quad$ Recall $\mathbb{E}[X]$ is a constant

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \text { (linearity of expectation!) }
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}[X]=\frac{21}{6}$
- $\mathbb{E}\left[X^{2}\right]=\frac{91}{6}$
$\operatorname{Var}(\mathrm{X})=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since X_{A} only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so

$$
\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=\mathbb{E}\left[X_{A}\right]-\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}=p(1-p)
$$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof by counter-example:

- Let X be a r.v. with $\operatorname{pmf} P(X=1)=P(X=-1)=1 / 2$
- What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$?
- Let $Y=-X$
- What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$?

What is $\operatorname{Var}(X+Y)$?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y=X \bmod 2$ be the parity (even/odd) of X. Are X and Y independent?

Poll:

pollev.com/stefanotessaro617
A. Yes
B. No

Example

Make $2 n$ independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

Poll:

pollev.com/stefanotessaro617
A. Yes
B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Proof

$$
\begin{aligned}
& \text { Let } x_{i}, \mathrm{y}_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \begin{aligned}
\mathbb{E}[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
\end{aligned}
$$

Note: NOT true in general; see earlier example $\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}$
(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
&=\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
&=\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
&=\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
&=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
&=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
&=\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]

$$
\operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \text { Note } \operatorname{Var}\left(X_{i}\right)=p(1-p)
$$

