CSE 312
 Foundations of Computing II

Lecture 12: Zoo of Discrete RVs

Review Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

$X \sim \operatorname{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$\begin{aligned} & P(X=k)=\frac{1}{b-a+1} \\ & \mathbb{E}[X]=\frac{a+b}{2} \\ & \operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12} \end{aligned}$	$\begin{aligned} & P(X=1)=p, P(X=0)=1-p \\ & \mathbb{E}[X]=p \\ & \operatorname{Var}(X)=p(1-p) \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\ & \mathbb{E}[X]=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$
$X \sim \operatorname{Geo}(p)$	$X \sim \operatorname{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$\begin{aligned} & P(X=k)=(1-p)^{k-1} p \\ & \mathbb{E}[X]=\frac{1}{p} \\ & \operatorname{Var}(X)=\frac{1-p}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\ & \mathbb{E}[X]=\frac{r}{p} \\ & \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\ & \mathbb{E}[X]=n \frac{K}{N} \\ & \operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)} \end{aligned}$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.
Notation: $X \in \operatorname{Unif}(a, b)^{〔}$ of $k \cup$ Example: value shown on one PMF: $\mathrm{P}(X-i)=\frac{1}{b-a} \quad i \in\{a, a+1, \ldots$ roll of a fair die is Unif(1,6):
PMF: $\mathrm{P}(\underline{X=i})=\frac{1}{b-a+1}$

- $P(X=i)=1 / 6$

Expectation: $\mathbb{E}[X]=\frac{a+b}{2}$

- $\mathbb{E}[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}$ (D)
PMF: $P(X=1)=p, P(X=0)=1-p$

Expectation:

Variance:

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$
Expectation: $\mathbb{E}[X]=p \quad$ Note: $\mathbb{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)$

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i} \quad n, \rho$

Examples:

- \# of heads in n coin flips
- \# of 1 s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table

Poll:

pollev.com/stefanotessaro617 $P(X=k) \quad k \in\{0,1, \ldots, n\}$
| A. $p^{k}(1-p)^{n-k} c$
B. $n p$

12
C. $\binom{n}{k} p^{k}(1-p)^{n-k}$
D. $\binom{n}{n-k} p^{k}(1-p)^{n-k}$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

$$
\begin{aligned}
& E\left(Y_{i}\right]=p \\
& \operatorname{Von}\left(Y_{i}\right)=p((-p)
\end{aligned}
$$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Expectation:

Variance:

Poll:
pollev.com/stefanotessaro617 Mean Variance
A. p
p
门 B. $n p$
$n p(1-p)$
C. $n p$
$n p^{2}$
(D. $n p$
$n^{2} p$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathbb{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Mean, Variance of the Binomial

It means "independent \& identically distributed"
If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d.), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$
Claim $\mathbb{E}[X]=n p$

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n \mathbb{E}\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
$$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(10,0.25)$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, 0.5)$

PMF for $\mathbf{X} \sim \operatorname{Bin}(\mathbf{3 0}, \mathbf{0 . 1})$

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.

Poll:
pollev.com/stefanotessaro617
a. 1022.99 S
b. 1.024 LL
c. 1.02298 ।
d. 1
e. Not enough information to compute

Brain Break

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and other Random Variables

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$ PMF:

Expectation:

Variance:

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF: $P(X=k)=(1-p)^{k-1} p$
Expectation: $\mathbb{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\underline{\frac{1-p}{p^{2}}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?

$$
\begin{aligned}
& p=\begin{array}{c}
\text { sureced in } \\
\text { phebe } \\
\text { sem } \\
\text { love } \\
\approx 0.36
\end{array} \\
& X \subset \operatorname{Gec}(p) \\
& E[x]=\frac{1}{p}=\frac{1}{0.36}
\end{aligned}
$$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{t h}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $\mathrm{Z}_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF: $P(X=k)=\binom{k-1}{r-1} p^{r}\left(\underline{1-p)^{k-r}}\right.$

Expectation: $\mathbb{E}[X]=\frac{r}{p}$
Variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$
PMF: $P(X=k)=\frac{\binom{R}{k}\binom{N-K}{n-k}}{\binom{n-k}{n}}$
Expectation: $\mathbb{E}[X]=n \frac{K}{N}$
Variance: $\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$

$X \sim \operatorname{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$\begin{aligned} & P(X=k)=\frac{1}{b-a+1} \\ & \mathbb{E}[X]=\frac{a+b}{2} \\ & \operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12} \end{aligned}$	$\begin{aligned} & P(X=1)=p, P(X=0)=1-p \\ & \mathbb{E}[X]=p \\ & \operatorname{Var}(X)=p(1-p) \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\ & \mathbb{E}[X]=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$
$X \sim \operatorname{Geo}(p)$	$X \sim \operatorname{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$\begin{aligned} & P(X=k)=(1-p)^{k-1} p \\ & \mathbb{E}[X]=\frac{1}{p} \\ & \operatorname{Var}(X)=\frac{1-p}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\ & \mathbb{E}[X]=\frac{r}{p} \\ & \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\ & \mathbb{E}[X]=n \frac{K}{N} \\ & \operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)} \end{aligned}$

Preview: Poisson

Model: \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

