CSE 312 Foundations of Computing II

Lecture 12: Zoo of Discrete RVs

Review Variance – Properties

Definition. The variance of a (discrete) RV X is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

2

Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ Theorem. If X, Y independent, $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$ $\bigcap(\underbrace{\langle \cdot \in h_1 & \cdots & \langle \cdot \in k_2 \dots \rangle}_{i = n} = \bigcap(\underbrace{\langle \cdot \mid e \mid k_1 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \rangle}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid e \mid k_2 \vee}_{i = 1} - \bigcap(\underbrace{\langle \cdot \mid k_2 \vee}$

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Welcome to the Zoo! (Preview) 🏠 🚧 🎲 🍰 🦘 💱

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X = k) = \frac{1}{b - a + 1}$ $\mathbb{E}[X] = \frac{a + b}{2}$ $Var(X) = \frac{(b - a)(b - a + 2)}{12}$	$P(X = 1) = p, P(X = 0) = 1 - p$ $\mathbb{E}[X] = p$ $Var(X) = p(1 - p)$	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ $\mathbb{E}[X] = np$ $Var(X) = np(1 - p)$
$X \sim \text{Geo}(p)$	$X \sim \text{NegBin}(r, p)$	$X \sim \text{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k - 1}p$ $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$	$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$ $\mathbb{E}[X] = \frac{r}{p}$ $Var(X) = \frac{r(1-p)}{p^2}$	$P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ $\mathbb{E}[X] = n\frac{K}{N}$ $Var(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$

Agenda

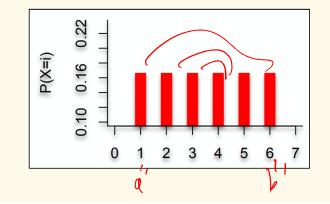
- Discrete Uniform Random Variables 🗲
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $uwf(q_1h)$ PMF: $for iff(q_1h)$ Expectation: q_2h Variance:

Example: value shown on one roll of a fair die



7

Discrete Uniform Random Variables ~ is distributed as

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: X ~ Unif(a, b) **PMF:** $P(X = i) = \frac{1}{b - a + 1}$ Expectation: $\mathbb{E}[X] = \frac{a+b}{2}$ Variance: $Var(X) = \frac{(b-a)(b-a+2)}{12}$ $5 i^{2} - h(n+1)(2n+1)$

Example: value shown on one roll of a fair die is Unif(1,6): • P(X = i) = 1/6• $\mathbb{E}[X] = 7/2$ • Var(X) = 35/120.22 P(X=i) 0.10 0.16 2 3 5

\S2M

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables 🕳
- Binomial Random Variables
- Geometric Random Variables
- Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ PMF: P(X = 1) = p, P(X = 0) = 1 - pExpectation: Variance: Poll: pollev.com/paulbeame028

Po	Poll:				
ро	pollev.com/paulbeame028				
	Mean	Variance			
Α.	p	p			
Β.	p	1 - p			
С.	p	p(1-p)			
D.	p	<i>p</i> ²			

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ **PMF:** P(X = 1) = p, P(X = 0) = 1 - p**Expectation:** $\mathbb{E}[X] = p$ Note: $\mathbb{E}[X^2] = p$ Variance: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1-p)$ **Examples:** multiple choice • Coin flip Randomly guessing on a MC test question A server in a cluster fails Any indicator RV

Agenda

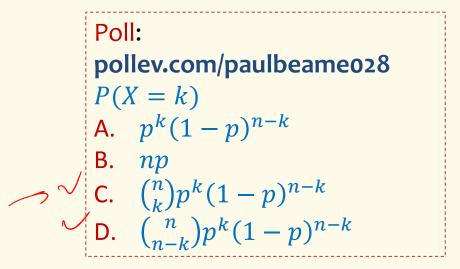
- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables 🗲
- Geometric Random Variables
- Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Examples:

- # of heads in *n* coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of *n* computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table



Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \frac{\text{Ber}(p)}{\sum_{i=1}^n Y_i}$ $(Y_i + Y_i) = \sum_{n=0}^n Y_i$ $(Y_i + Y_i) = \sum_{n=0}^n Y_i$

Notation: $X \sim Bin(n, p)$ PMF: $P(X = k) = {\binom{n}{k}}p^k(1-p)^{n-k}$ Expectation: Variance:

Poll: pollev.com/paulbeame028				
•	Mean	Variance		
A.	p	p		
Β.	np	np(1-p)		
C.	L	np^2		
D.	np	n^2p		

 $\int = \prod_{k=0}^{n} p(x^{k}) = \sum_{k=0}^{n} \binom{n}{k} \frac{h}{h} \binom{1}{h} \frac{h}{h}$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$ PMF: $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$ Expectation: $\mathbb{E}[X] = np$ Variance: Var(X) = np(1 - p)

Mean, Variance of the Binomial "i.i.d." is a commonly used phrase. It means "independent & identically distributed"

If $Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$ and independent (i.i.d.), then $X = \sum_{i=1}^n Y_i, X \sim \text{Bin}(n, p)$

Claim
$$\mathbb{E}[X] = np$$

 $\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$
Claim $Var(X) = np(1-p)$

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(Y_{i}) = n\operatorname{Var}(Y_{1}) = np(1-p)$$

16

Binomial PMFs

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0

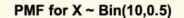
2

4

k

6

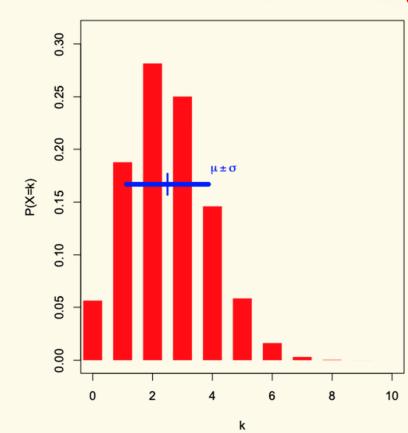
P(X=k)



 $\mu \pm \sigma$

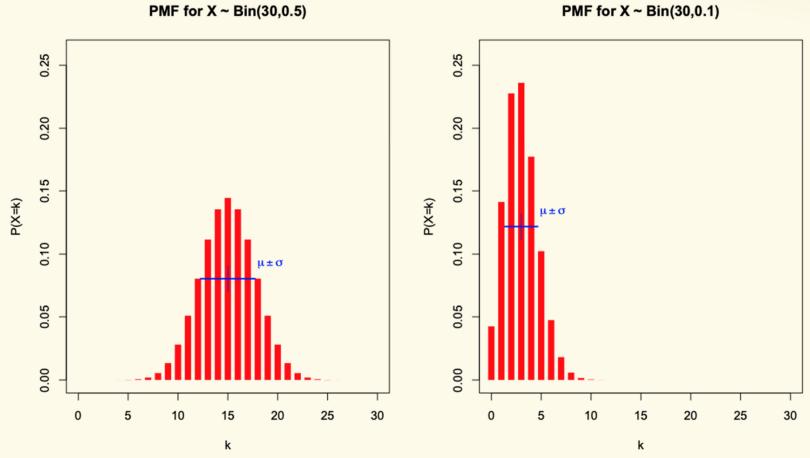
10

8



PMF for X ~ Bin(10,0.25)

Binomial PMFs



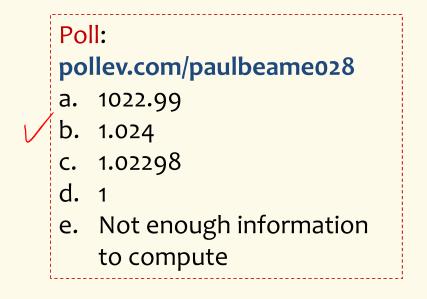
PMF for X ~ Bin(30,0.1)

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let X be the number of corrupted bits. What is $\mathbb{E}[X]$?

[Aconet 1024 (499) = 1024 - .999× 1024 1024 (1-.999)



Brain Break

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and other Random Variables

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success.

X is called a Geometric random variable with parameter *p*.

Notation: $X \sim \text{Geo}(p)$ PMF: $y_{(} \downarrow (= h) = (1-p)^{h-1} P$ Expectation: $f \downarrow (\downarrow (= h) = y_{p})$ Variance: Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success.

X is called a Geometric random variable with parameter *p*.

Notation: $X \sim \text{Geo}(p)$ PMF: $P(X = k) = (1 - p)^{k-1}p$ Expectation: $\mathbb{E}[X] = \frac{1}{p}$ Variance: $\text{Var}(X) = \frac{1-p}{p^2}$ $\mathbb{E}[X]$

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?

0

- (1- juoo,

Negative Binomial Random Variables

A discrete random variable *X* that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim \text{Geo}(p)$. *X* is called a Negative Binomial random variable with parameters *r*, *p*.

Notation: $X \sim \text{NegBin}(r, p)$ PMF: $P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$ Expectation: $\mathbb{E}[X] = \frac{r}{p}$ Variance: $Var(X) = \frac{r(1-p)}{p^2}$

25

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$ PMF: $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ Expectation: $\mathbb{E}[X] = n\frac{K}{N}$ Variance: $\text{Var}(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$

26

Kit Kat

Hope you enjoyed the zoo! 🏠 👫 😳 🤴 🍰 🦙 💝

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X = k) = \frac{1}{b - a + 1}$ $\mathbb{E}[X] = \frac{a + b}{2}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$
$\mathbb{E}[X] = \frac{a+b}{2}$ $(b-a)(b-a+2)$	$\mathbb{E}[X] = p$	$\mathbb{E}[X] = np$
$Var(X) = \frac{\frac{2}{(b-a)(b-a+2)}}{12}$	Var(X) = p(1-p)	Var(X) = np(1-p)
$X \sim \text{Geo}(p)$	$X \sim \text{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k - 1}p$	$P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$	$P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$P(X = k) = (1 - p)^{k - 1}p$ $\mathbb{E}[X] = \frac{1}{p}$	$\mathbb{E}[X] = \frac{r}{n}$	$\mathbb{E}[X] = n \frac{K}{N}$
$Var(X) = \frac{1-p}{p^2}$	$\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$	$Var(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$

Preview: Poisson

Model: # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent