CSE 312 Foundations of Computing II

Lecture 13: Poisson Distribution

Announcements

- (temporary) office hours + class change
 - Today's office hours moved to 10:30-11:30
 - Friday's office hour is <u>canceled</u>
 - Drop me e-mail to schedule zoom meeting
 - Prof. Beame will give Section A classes on Wed + Fri this week
- Midterm info is posted
 - Q&A session next Tuesday 4pm on Zoom
 - Practice midterm + other practice materials posted this
 Wednesday

Zoo of Random Variables

$$\begin{array}{l} X \sim \text{Unif}(a,b) & X \sim \text{Ber}(p) & X \sim \text{Bin}(n,p) \\
 \begin{array}{l} P(X = k) = \frac{1}{b - a + 1} \\
 E[X] = \frac{a + b}{2} \\
 Var(X) = \frac{(b - a)(b - a + 2)}{12} & P(X = 1) = p, P(X = 0) = 1 - p \\
 E[X] = p \\
 Var(X) = p(1 - p) & Var(X) = p(1 - p) & Var(X) = np(1 - p) \\
\end{array}$$

$$\begin{array}{l} X \sim \text{Ceo}(p) & X \sim \text{NegBin}(r,p) & X \sim \text{HypGeo}(N,K,n) \\
 P(X = k) = (1 - p)^{k - 1}p \\
 E[X] = \frac{1}{p} \\
 Var(X) = \frac{1 - p}{p^2} & Var(X) = \frac{r(1 - p)}{p^2} & Var(X) = n\frac{r(1 - p)}{p^2} \\
\end{array}$$

Agenda

Poisson Distribution

- Approximate Binomial distribution using Poisson distribution

Preview: Poisson

Model: # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

X = # of cars passing through a light in 1 hour

Example – Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour. $\mathbb{E}[X] = 3$

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into *n* intervals of length 1/n-P-> 10 car What should *p* be? This gives us n independent intervals pollev.com/stefanotessaro617 Assume at most one car per interval A. 3/n 21 3nΒ. p = probability car arrives in an interval 3 6 3/60 D.

Example – Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X] = \lambda$ for some given $\lambda > 0$

Discrete version: *n* intervals, each of length 1/n.

In each interval, there is a car with probability $p = \lambda/n$ (assume ≤ 1 car can pass by)

Each interval is Bernoulli: $X_i = 1$ if car in *i*th interval (0 otherwise). $P(X_i = 1) = \lambda / n$

$$X = \sum_{i=1}^{n} X_{i} \qquad X \sim \operatorname{Bin}(n, p) \qquad P(X = i) = {\binom{n}{i}} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

indeed! $\mathbb{E}[X] = pn = \lambda$

Don't like discretization

X is <u>binomial</u> $P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$

8

We want now $n \rightarrow \infty$

$$P(X = i) = {\binom{n}{i}} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i} = \underbrace{\binom{n!}{(n-i)!n^{i}}}_{\rightarrow 1} \frac{\lambda^{i}}{(1 - \frac{\lambda}{n})^{n}} \left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{\lambda}{n}\right)^{-i}$$

$$\rightarrow P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

Poisson Distribution

- Suppose "events" happen, independently, at an *average* rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Several examples of "Poisson processes":

- *#* of cars passing through a traffic light <u>in 1 hour</u>
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval 1
- # of patients arriving to ER within an hour

Assume fixed average rate 9

Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.

Variance

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$
Theorem. If X is a Poisson RV with parameter λ , then Var(X) = λ
Proof. $\mathbb{E}[X^{2}] = \sum_{i=0}^{\infty} P(X = i) \cdot i^{2} = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2} = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$
 $= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i = \lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot (j+1)$
 $= \lambda \left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \right] = \lambda^{2} + \lambda$
Similar to the previous proof
Verify offline.
Var(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i)=e^{-\lambda}\cdot\frac{\lambda^{i}}{i!}$$

Poisson approximates binomial when: *n* is very large, *p* is very small, and $\lambda = np$ is "moderate" e.g. (n > 20 and p < 0.05), (n > 100 and p < 0.1)

Formally, Binomial approaches Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$

Probability Mass Function – Convergence of Binomials

From Binomial to Poisson

$$N \to \infty$$

$$np = \lambda$$

$$np = \lambda$$

$$p(X = k) = {n \choose k} p^k (1 - p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

$$N \to \infty$$

$$np = \lambda$$

$$p = \frac{\lambda}{n} \to 0$$

$$P(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n = 10^{4}$
- Probability of (independent) bit corruption is $p = 10^{-6}$ What is probability that message arrives uncorrupted?

Using
$$X \sim \text{Poi}(\lambda = np = 10^4 \cdot 10^{-6} = 0.01)$$

 $P(X = 0) = e^{-\lambda} \cdot \frac{\lambda^0}{0!} = e^{-0.01} \cdot \frac{0.01^0}{0!} \approx 0.990049834$

Using $Y \sim Bin(104, 10^{-6})$ $P(Y = 0) \approx 0.990049829$

fty och = -, 01

Sum of Independent Poisson RVs

Theorem. Let
$$X \sim \text{Poi}(\lambda_1)$$
 and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.
Let $Z = X + Y$. For all $z = 0, 1, 2, 3 ...,$
 $P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$

rindy.

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \dots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$. Let $Z = \sum_i X_i$

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0, 1, 2, 3 ..., $P(Z=z)=e^{-\lambda}\cdot\frac{\lambda^2}{z}$ X & non-rejorie P(Z = z) = ?pollev.com/stefanotessaro617 A. All of them are right 1. $P(Z = z) = \sum_{i=0}^{z} P(X = j, Y = z - j)$ B. The first 3 are right [2. $P(Z = z) = \sum_{i=0}^{\infty} P(X = j, Y = z - j)$ 3. $P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j) P(X = j)$ C. Only 1 is right X D. Don't know 4. $P(Z = z) = \sum_{i=0}^{z} P(Y = z - j | X = j)$

Proof

$$P(Z = z) = \sum_{j=0}^{k} P(X = j, Y = z - j)$$
 Law of total probability

$$= \sum_{j=0}^{k} P(X = j) P(Y = z - j) = \sum_{j=0}^{k} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z - j!}$$
 Independence

$$= e^{-\lambda_{1} - \lambda_{2}} \left(\sum_{j=0}^{k} \cdot \frac{1}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j} \right)$$

$$= e^{-\lambda} \left(\sum_{j=0}^{k} \frac{z!}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j} \right) \frac{1}{z!}$$

$$= e^{-\lambda} \cdot (\lambda_{1} + \lambda_{2})^{\frac{1}{2}} \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!}$$

Binomial
Theorem

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i)=e^{-\lambda}\cdot\frac{\lambda}{i}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to Poi(λ)
- Poisson approximates Binomial when n is large,
 p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

- Continuous Random Variables
- Probability Density Function
- Cumulative Density Function

Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely
 - Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

$$P(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

P(T=0.5)=0

Bottom line

- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want
 - $-P(T \in [0,1]) = 1$
 - $-P(T\in [a,b])=b-a$
 - ...
- How do we model the behavior of *T*?