CSE 312 Foundations of Computing II

Lecture 13: Poisson Distribution

Announcements

- (temporary) office hours + class change
- Today's office hours moved to 10:30-11:30
- Friday's office hour is canceled
- Drop me e-mail to schedule zoom meeting
- Prof. Beame will give Section A classes on Wed + Fri this week
- Midterm info is posted
- Q\&A session next Tuesday 4pm on Zoom
- Practice midterm + other practice materials posted this Wednesday

$X \sim \operatorname{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$\begin{aligned} & P(X=k)=\frac{1}{b-a+1} \\ & E[X]=\frac{a+b}{2} \\ & \operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12} \end{aligned}$	$\begin{aligned} & P(X=1)=p, P(X=0)=1-p \\ & E[X]=p \\ & \operatorname{Var}(X)=p(1-p) \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\ & E[X]=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$
$X \sim \operatorname{Geo}(p)$	$X \sim \operatorname{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$\begin{aligned} & P(X=k)=(1-p)^{k-1} p \\ & E[X]=\frac{1}{p} \\ & \operatorname{Var}(X)=\frac{1-p}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\ & E[X]=\frac{r}{p} \\ & \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\ & E[X]=n \frac{K}{N} \\ & \operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)} \end{aligned}$

Agenda

- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution

Preview: Poisson

Model: \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=\#$ of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour $X=\#$ cars passing through a light in 1 hour.

$$
\mathbb{E}[X]=3
$$

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1 / n$

This gives us n independent intervals
Assume at most one car per interval
$p=$ probability car arrives in an interval

What should p be?
pollev.com/stefanotessaro617
A. $3 / n 21$
B. $3 n$
C. 3
D. $3 / 60$

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$

Discrete version: n intervals, each of length $1 / n$.
In each interval, there is a car with probability $p=\lambda / n$ (assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$

$$
X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p) \quad P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

$$
\text { indeed! } \mathbb{E}[X]=p n=\lambda
$$

Don't like discretization

$$
X \text { is binomial } P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& \rightarrow P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \operatorname{Poi}(\lambda))$ and has distribution (PMF):

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour
- \# of photons hitting a light detector in a given interval
- \# of patients arriving to ER within an hour

Probability Mass Function

$P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{(L)}$

This Photo by Unknown Author is licensed under CC BY-NC

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} \underbrace{e^{-\lambda}} \frac{\lambda^{i n}}{i!}=e^{\sum_{i=0}^{-\lambda}} \frac{\lambda^{i}}{i!}=e^{-\lambda} e^{\lambda}=1
$$

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}[X]=\lambda
$$

Proof. $\begin{aligned} & \mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot \dot{V}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{(i)}}{(\underline{i-1)!}} \\ &=\lambda \sum_{i=1}^{i\left(i \cdot \lambda^{2}\right)!} e^{-\lambda} \cdot \frac{1}{(i-1)!} \\ &=\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda(\text { see prior slides!) } \\ & i=\lambda\end{aligned}$

Variance

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left[X^{2}\right]=\sum_{i=0}^{\infty} P(X=i) \cdot i^{2}=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$

$$
\begin{aligned}
& =\lambda \sum_{i=e^{-\lambda}}^{\infty} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1) \\
& =\lambda \underbrace{[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j+\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\underbrace{\lambda^{2}+\lambda}_{\text {Similar to }}} .
\end{aligned}
$$

Similar to the previous proof Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda^{2}+\lambda-\underline{\lambda}^{2}=\lambda
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates binomial when: n is very large, p is very small, and $\lambda=n p$ is "moderate"

$$
\text { e.g. }(n>20 \text { and } p<0.05) \text {, }(n>100 \text { and } p<0.1)
$$

Formally, Binomial approaches Poisson in the limit as
$n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $n p=\lambda$

Probability Mass Function - Convergence of Binomials

$$
\begin{aligned}
& \lambda=5 \\
& p=\frac{5}{n} \\
& \widetilde{n=10,15,20}
\end{aligned}
$$

From Binomial to Poisson

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n=104$

$$
\text { Qtexcol }=0,01
$$

- Probability of (independent) bit corruption is $p=10^{-6}$

What is probability that message arrives uncorrupted?

$$
\begin{aligned}
& \text { Using } X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \cdot 10^{-6}=0.01\right) \\
& \qquad P(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!} \approx 0.990049834
\end{aligned}
$$

Using $Y \sim \operatorname{Bin}\left(104,10^{-6}\right)$

$$
P(Y=0) \approx 0.990049829
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$. Let $Z=X+Y$. For all $Z=0, \overline{1,2}, 3 \ldots$,

$$
P(\underline{Z=z})=e^{-\lambda} \cdot \frac{\pi^{z}}{z!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $Z=\Sigma_{i} X_{i}$

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$. Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

$P(Z=z)=? \quad X$, ц non-woctre \quad pollev.com/stefanotessaro617

1. $P(Z=z)=\sum_{j=0}^{Z} P(X=\underline{j}, Y=z-j)$
2. $P(Z=z)=\sum_{j=0}^{\infty} P(X=j, Y=z-j)$
3. $P(Z=z)=\sum_{j=0}^{z} P(Y=\bar{z}-j \mid X=j) P(X=j)$
4. $P(Z=z)=\sum_{j=0}^{Z} P(Y=z-j \mid X=j)$
A. All of them are right
B. The first 3 are right ζ
C. Only 1 is right 8
D. Don't know 3

Proof

$$
\begin{aligned}
& P(Z=z)=\sum_{j=0}^{k} P(X=j, Y=z-j) \quad \text { Law of total probability } \\
& =\sum_{j=0}^{k} P(X=j) P(Y=z-j)=\Sigma_{j=0}^{k} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
& =e^{-\lambda_{1}-\lambda_{2}\left(\sum_{j=0}^{k} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right)} \\
& =e^{-\lambda\left(\sum_{j=0}^{k} \frac{2!)}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{(z!}} \quad \\
& =e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{\left.\frac{Q}{2}\right)} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} \quad \\
& \quad \begin{array}{l}
\text { Binomial } \\
\text { Theorem }
\end{array}
\end{aligned}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and $n p$ is moderate
- Sum of independent Poisson is still a Poisson

Next

- Continuous Random Variables
- Probability Density Function
- Cumulative Density Function

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

The outcome space is not discrete

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$$
P(T \geq 0.5)=1 / 2
$$

1		
0	0.5	1

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$$
P(0.2 \leq T \leq 0.5)=0.5-0.2=0.3
$$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Bottom line

- This gives rise to a different type of random variable
- $P(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want

$$
\begin{aligned}
& -P(T \in[0,1])=1 \\
& -P(T \in[a, b])=b-a \\
& -\ldots
\end{aligned}
$$

- How do we model the behavior of T ?

