CSE 312 Foundations of Computing II

Lecture 14: Continuous RV

$$
\begin{aligned}
& \text { Iam not Stefant } \\
& \text { painl Beame }
\end{aligned}
$$

Announcements

- PSet 4 due today
- PSet 3 returned yesterday
- Midterm general info is posted on Ed
- In your section. Closed book. No electronic aids.
- Practice midterm is posted
- Has format you will see, including 2-page "cheat sheet".
- Other practice materials linked also
- Midterm Q\&A session next Tuesday 4pm on Zoom

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

The outcome space is not discrete

Lightning strikes a pole within a one-minute time frame

- $T=$ time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$$
P(T \geq 0.5)=1 / 2
$$

Lightning strikes a pole within a one-minute time frame

- $T=$ time of lightning strike
- Every point in time within [0,1] is equally likely

$$
P(0.2 \leq T \leq 0.5)=0.5-0.2=0.3
$$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

0	0.5
$P(T=0.5)=0$	

Bottom line

- This gives rise to a different type of random variable
- $P(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want
$-P(T \in[0,1])=1$
$-P(T \in[a, b])=b-a$
-...
- How do we model the behavior of T ?

First try: A discrete approximation

Recall: Cumulative Distribution Function (CDF)

A Discrete Approximation

Cumulative Distribution Function CDF

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

y

Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x t
$$

$$
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
$$

Density \neq Probability

$$
f_{X}(y) \neq 0 \quad P(X=y)=0
$$

Probability Density Function - Intuition

What $f_{X}(x)$ measures: The local rate at which probability accumulates

Probability Density Function - Intuition

$1 \quad \frac{P(X \approx y)}{P(X \approx z)}=2$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)} 16$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}$

PDF of Uniform RV

$$
\begin{aligned}
& \text { Probability of Event } \int_{a}^{h} f_{4}(x) d x=\underbrace{\int_{0}^{0} f_{X}(x) d x+\int_{0}^{0} f_{X}(x) d x}_{\text {Non-negativity: } f_{X}(x) \geq 0 \text { for all } x \in \mathbb{R}} \text { OUnif(0,1)} \\
& \qquad \uparrow \quad f_{X}(x)=\left\{\begin{array}{ll:l}
1, & x \in[0,1] \\
0, & x \notin[0,1] & \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{array}\right.
\end{aligned}
$$

Probability of Event
 $P(x \leq-)^{2}=\begin{aligned} & C D F=\int_{-\infty}^{2} f_{x}(y) d y \\ & F_{x}(y)\end{aligned}$

 $X \sim \operatorname{Unif}(0,1)$Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
$f_{X}(x)=\left\{\begin{array}{ll}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{array} \quad\right.$ Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
0

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,0.5)$

Uniform Distribution
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Example. $T \sim \operatorname{Unif}(0,1)$
0

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

$$
F_{T}(x)=P(T \leq x)=\left\{\begin{array}{ll}
0 \\
\frac{?}{1}
\end{array}\right) \quad \begin{aligned}
& x \leq 0 \\
& 0 \leq x \leq 1 \\
& 1 \leq x
\end{aligned}
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
Therefore: $P(X \in[a, b])=F(b)-F(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\lim _{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \lim _{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \mathrm{~d} x=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

Definition.

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

$$
f_{T}(x) \cdot x= \begin{cases}x, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Area of triangle

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}[X]= & \int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
\end{aligned} \quad \begin{aligned}
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= & \left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right) \\
& =\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Uniform Density - Variance
$X \sim \operatorname{Unif}(a, b)$
$\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x$
$=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12} \\
& =\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

