CSE 312 Foundations of Computing II

Lecture 14: Continuous RV

Announcements

- PSet 4 due today
- PSet 3 returned yesterday
- Midterm general info is posted on Ed
 In your section. Closed book . No electronic aids.
- Practice midterm is posted
 - Has format you will see, including 2-page "cheat sheet".
 - Other practice materials linked also
- Midterm Q&A session next Tuesday 4pm on Zoom

Agenda

• Continuous Random Variables

- Probability Density Function
- Cumulative Distribution Function

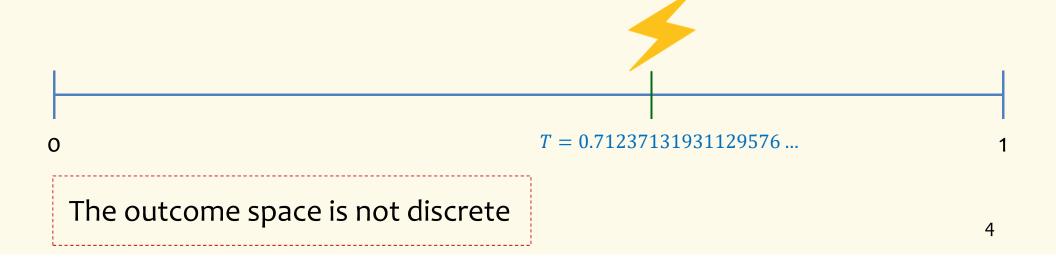
Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

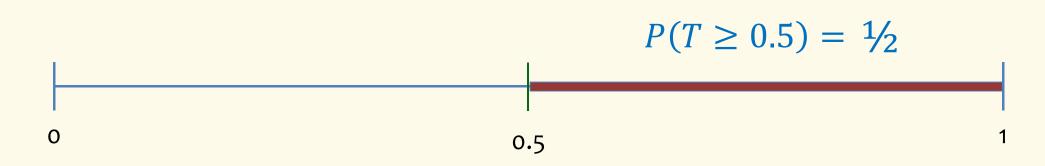
- *T* = time of lightning strike
- Every time within [0,1] is equally likely

- Time measured with infinitesimal precision.



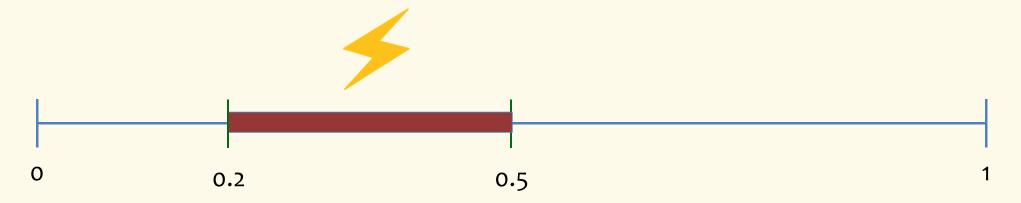
Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely



Lightning strikes a pole within a one-minute time frame

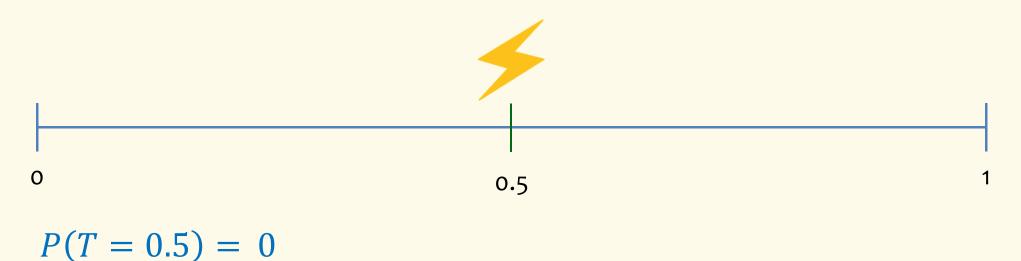
- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely



 $P(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

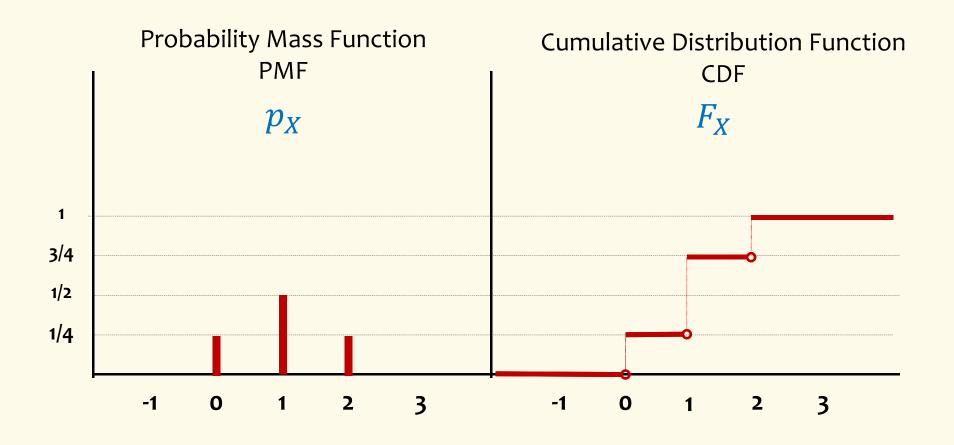


Bottom line

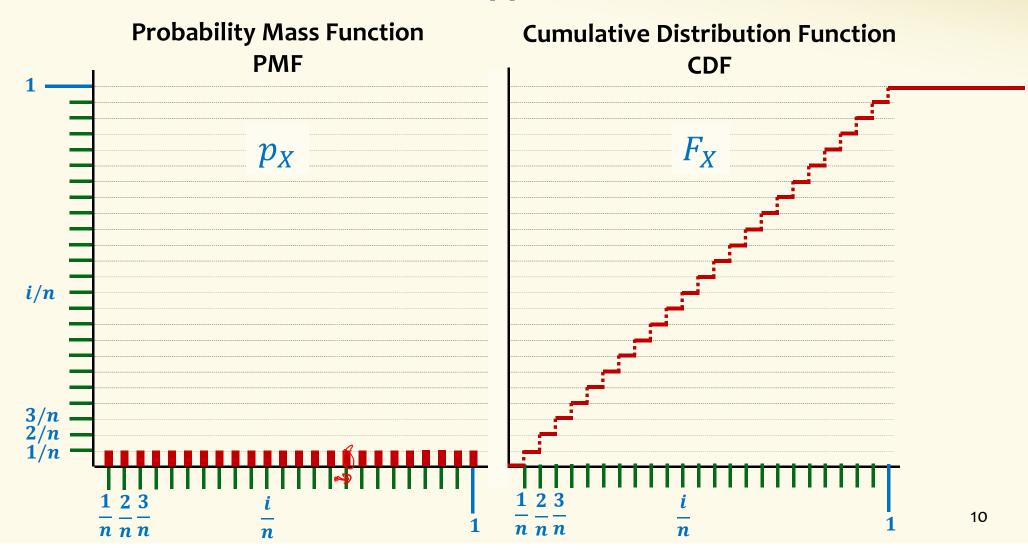
- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want
 - $P(T \in [0,1]) = 1$
 - $-P(T \in [a, b]) = b a$
 - ...
- How do we model the behavior of *T*?

```
First try: A discrete approximation
```

Recall: Cumulative Distribution Function (CDF)

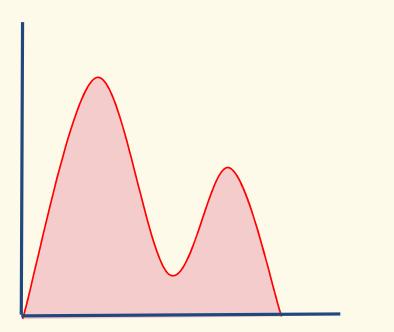


A Discrete Approximation



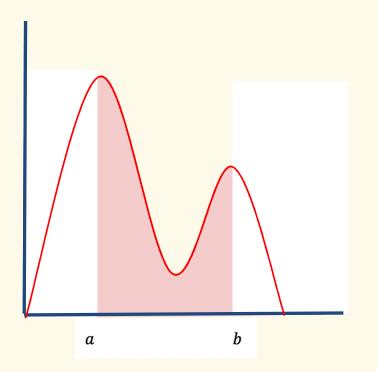
Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

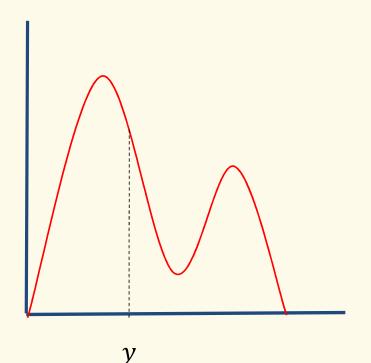
Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

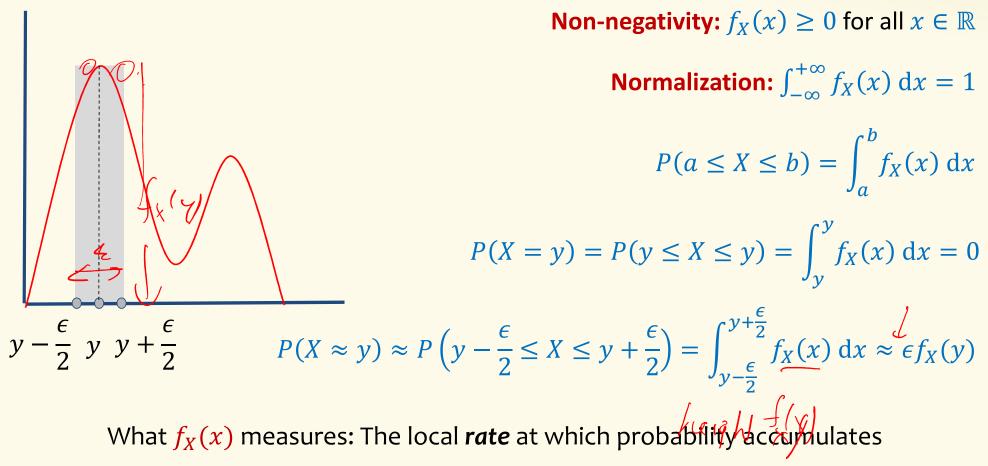
Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

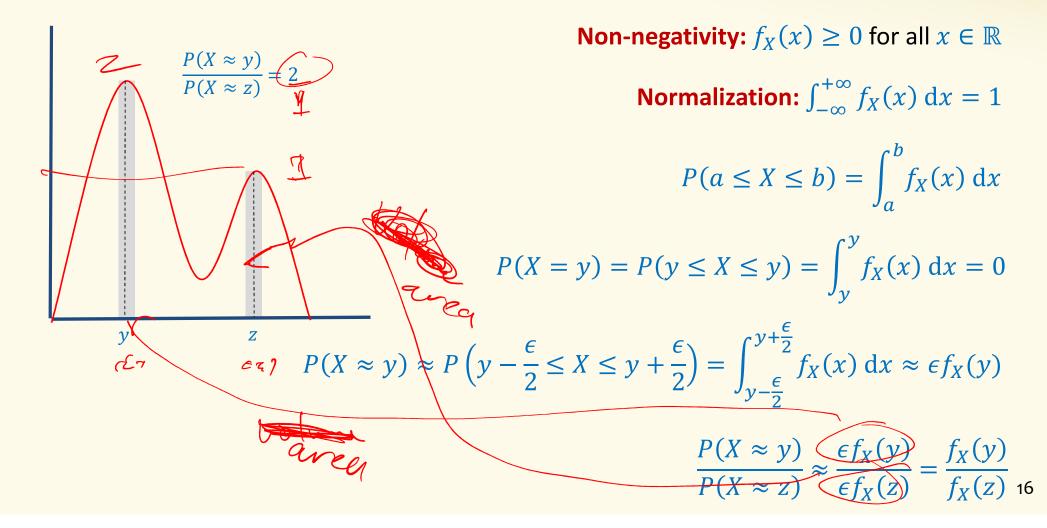


Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) \, dx = 1$ $P(a \le X \le b) = \int_a^b f_X(x) \, dx$ $P(X = y) = P(y \le X \le y) = \int_y^y f_X(x) \, dx = 0$ Density \ne Probability $f_X(y) \ne 0$ P(X = y) = 0

14



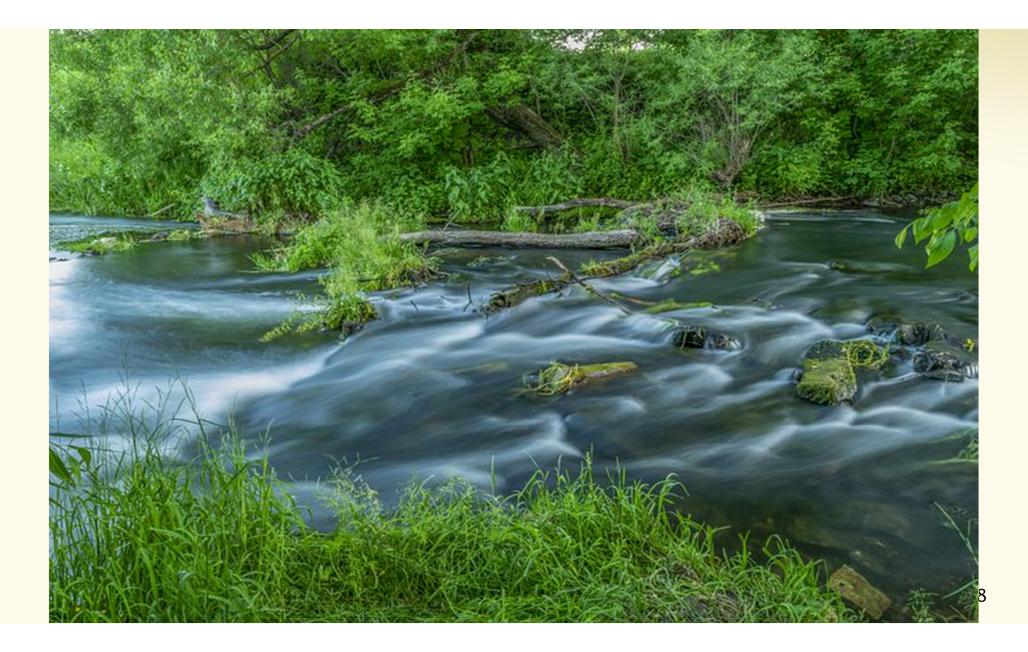
15



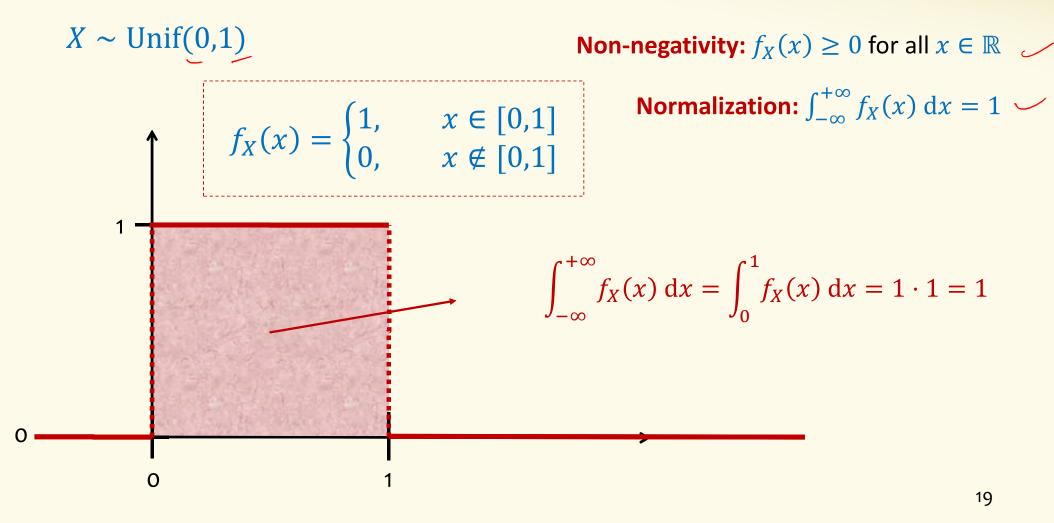
Definition. A continuous random variable X is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $P(a \le X \le b) = \int_{-\infty}^{b} f_X(x) \, \mathrm{d}x$ $P(X = y) = P(y \le X \le y) = \int_{-\infty}^{y} f_X(x) \, \mathrm{d}x = 0$ $P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$ $\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_Y(z)} = \frac{f_X(y)}{f_Y(z)}$

17



PDF of Uniform RV



$a < \circ \int_{a}^{b} f_{x}(x) dx = \int_{a}^{o} f_{x}(x) dx + \int_{o}^{b} f_{x}(x) dx$ Non-negativity: $f_{x}(x) \ge 0$ for all $x \in \mathbb{R}$ **Probability of Event** $X \sim \text{Unif}(0,1)$ **Normalization:** $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $f_X(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$ $P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$ 1. If $0 \le a$ and $a \le b \le 1$ $\exists a = 1 d\chi = b - q$ $P(a \le X \le b) = b - a$ 2. If a < 0 and $0 \le b \le 1$ Poll: pollev/paulbeameo28 $P(a \le X \le b) = b$ A. All of them are correct 3. If $a \ge 0$ and b > 1B. Only 1, 2, 4 are right $P(a \le X \le b) = b - a$ C. Only his right 4. If a < 0 and b > 1D. Only 1 and 2 are right $P(a \le X \le b) = 1_{f}$

maybe 71

20

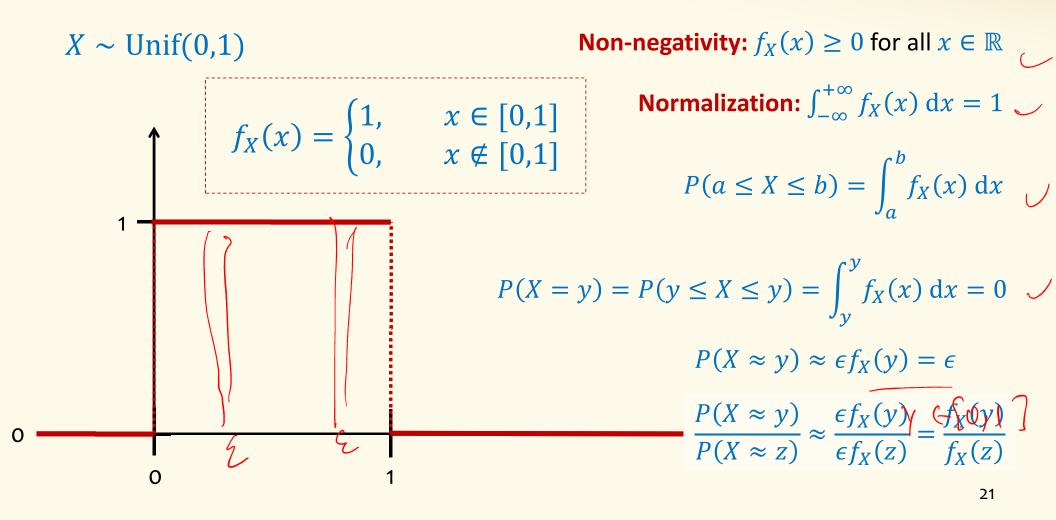
b

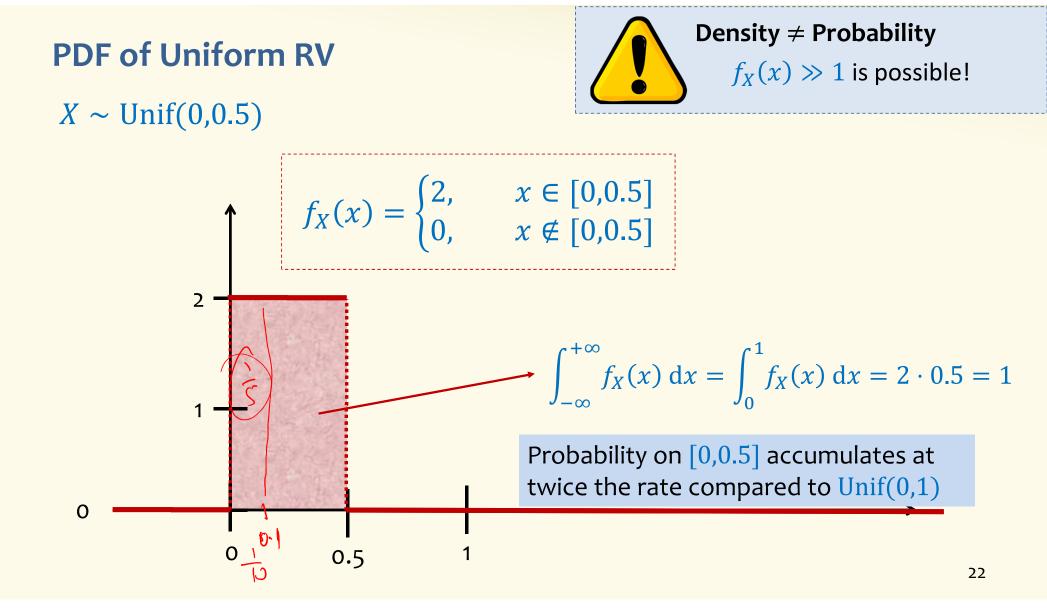
0

a

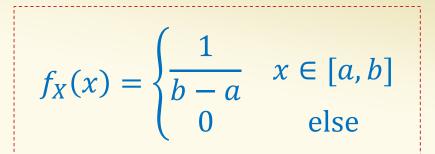
1

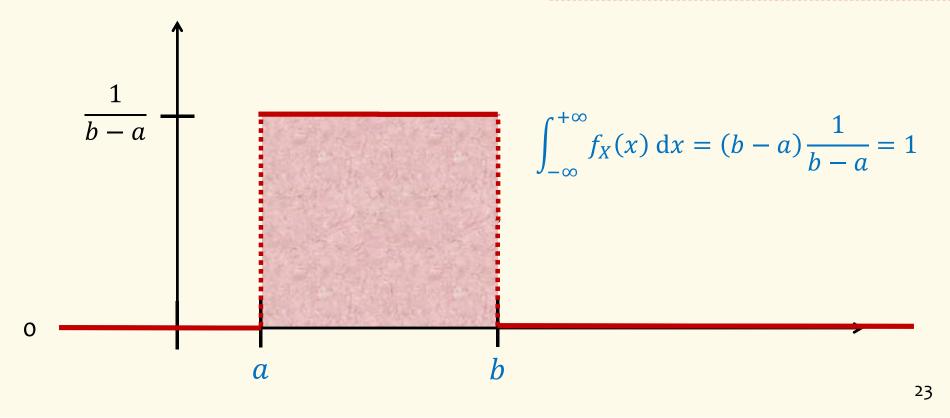
Probability of Event

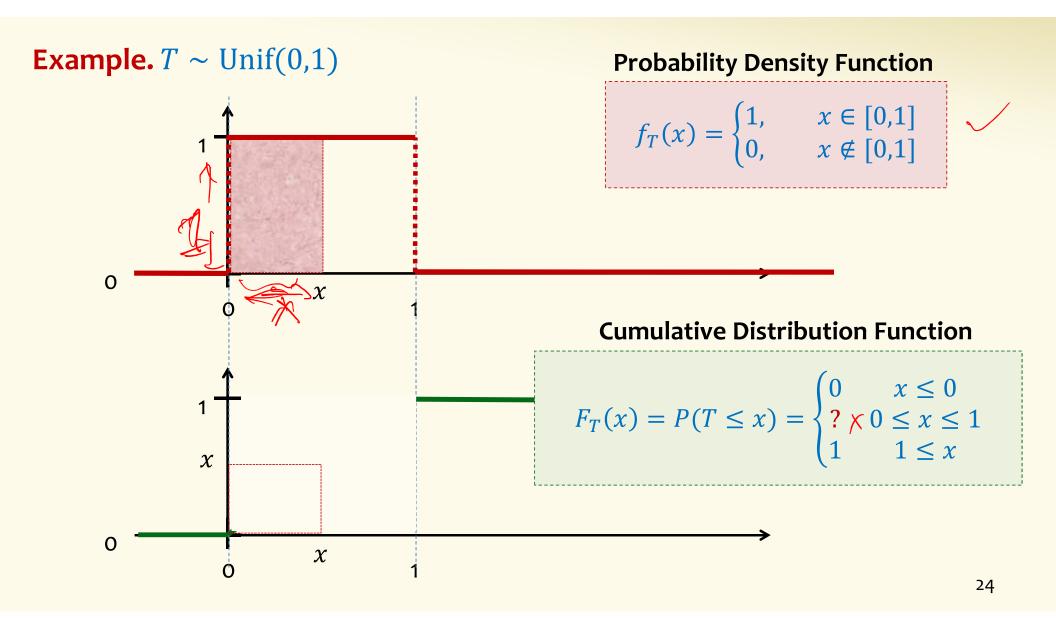




Uniform Distribution







Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) \, dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx}F_X(x)$

Therefore: $P(X \in [a, b]) = F(b) - F(a)$ F_X is monotone increasing, since $f_X(x) \neq 0$. That is $F_X(c) \leq F_X(d)$ for $c \leq d$ $\lim_{a \to -\infty} F_X(a) = P(X \leq -\infty) = 0$ $\lim_{a \to +\infty} F_X(a) = P(X \leq +\infty) = 1$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Expectation of a Continuous RV

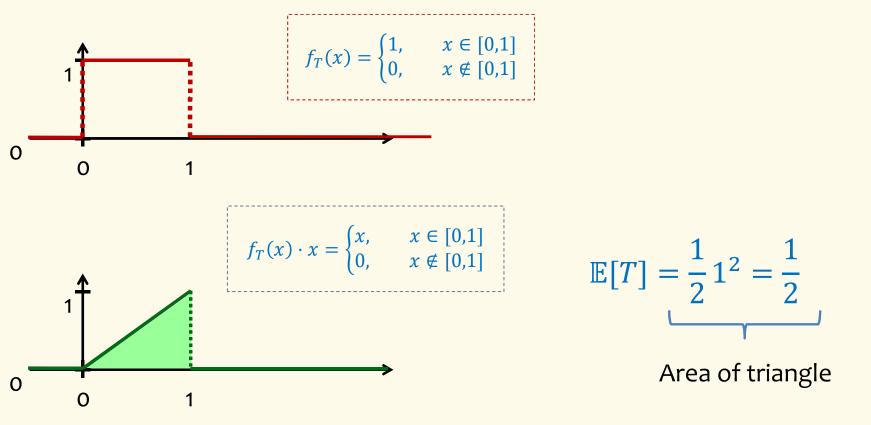
Definition. The **expected value** of a continuous RV *X* is defined as $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$

Fact. $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$

Definition. The variance of a continuous RV *X* is defined as $Var(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot (x - \mathbb{E}[X])^2 dx = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Expectation of a Continuous RV

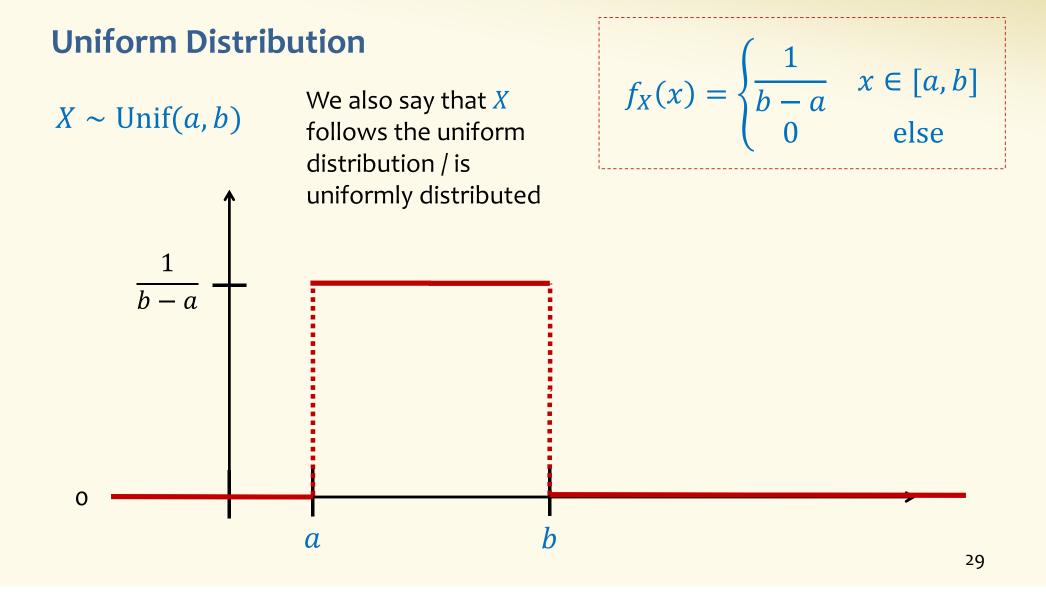
Example. *T* ~ Unif(0,1)



Definition.

 $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$

28



Uniform Density – Expectation

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$E[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$

= $\frac{1}{b-a} \int_a^b x \, dx = \frac{1}{b-a} \left(\frac{x^2}{2}\right) \Big|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2}\right)$
= $\frac{(b-a)(a+b)}{2(b-a)} = \frac{a+b}{2}$

Uniform Density – Variance

$$\mathbb{E}[X^2] = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, \mathrm{d}x$$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$= \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\right) \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)}$$
$$= \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

Uniform Density – Variance

$$\mathbb{E}[X^2] = \frac{b^2 + ab + a^2}{3} \qquad \mathbb{E}[X] = \frac{a+b}{2}$$

$$Var(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$
$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$
$$= \frac{4b^{2} + 4ab + 4a^{2}}{12} - \frac{3a^{2} + 6ab + 3b^{2}}{12}$$
$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$