CSE 312

Foundations of Computing II

Lecture 14: Continuous RV

Announcements

- PSet 4 due today
- PSet 3 returned yesterday
- Midterm general info is posted on Ed
 - In your section. Closed book . No electronic aids.
- Practice midterm is posted
 - Has format you will see, including 2-page "cheat sheet".
 - Other practice materials linked also
- Midterm Q&A session next Tuesday 4pm on Zoom

Agenda

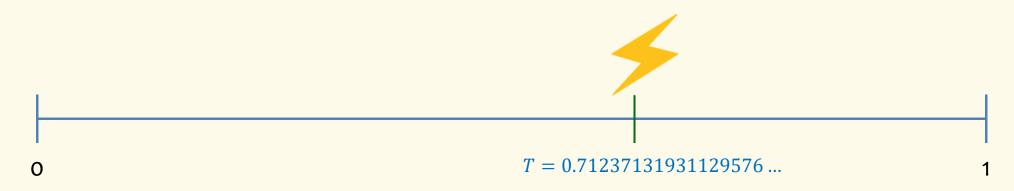
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is not discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely
 - Time measured with infinitesimal precision.

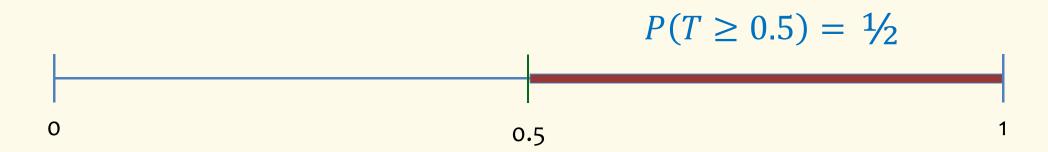


The outcome space is not discrete

.

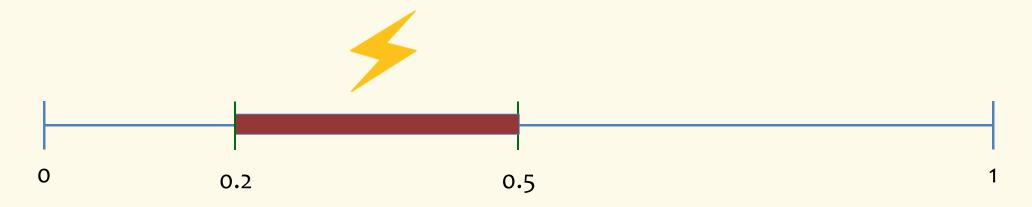
Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely



Lightning strikes a pole within a one-minute time frame

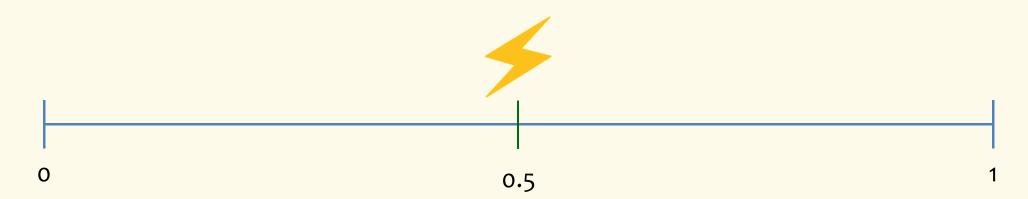
- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely



$$P(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely



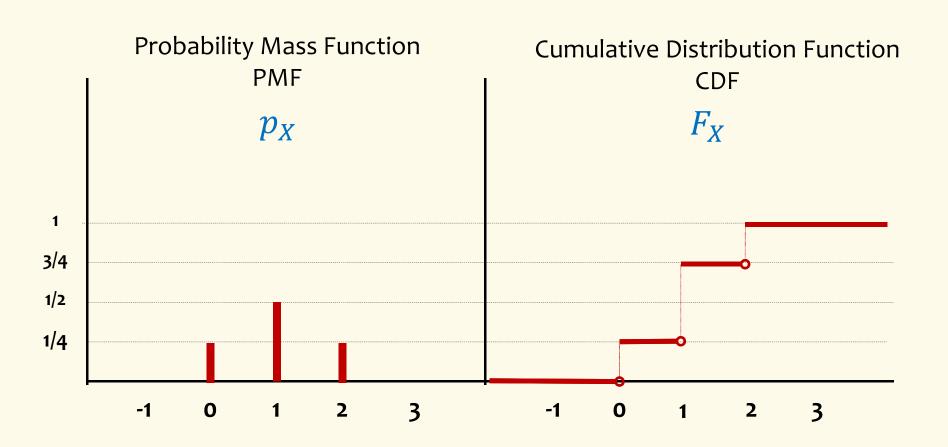
$$P(T = 0.5) = 0$$

Bottom line

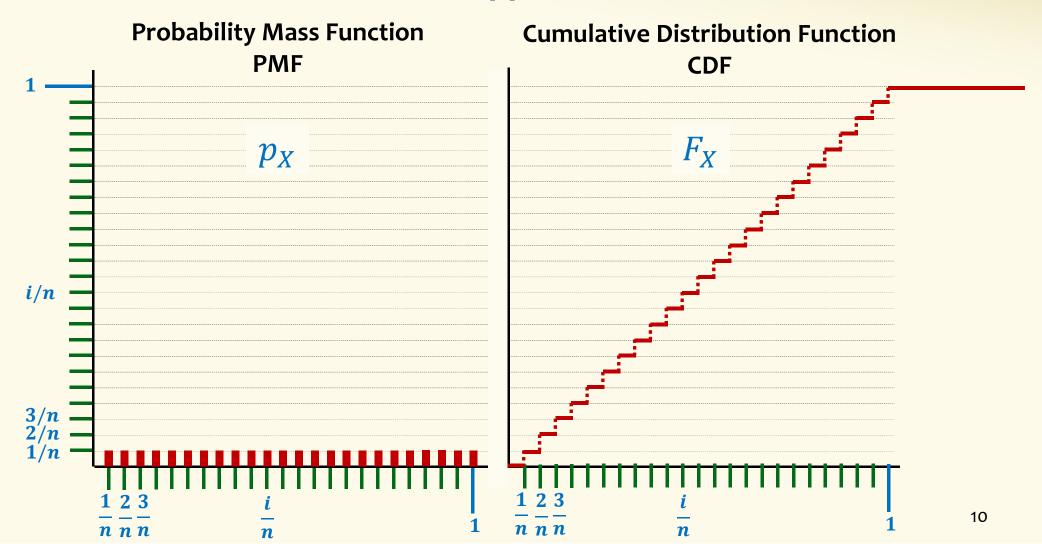
- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want
 - $-P(T \in [0,1]) = 1$ $-P(T \in [a,b]) = b - a$ -...
- How do we model the behavior of T?

First try: A discrete approximation

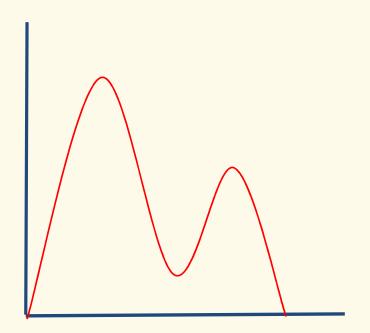
Recall: Cumulative Distribution Function (CDF)



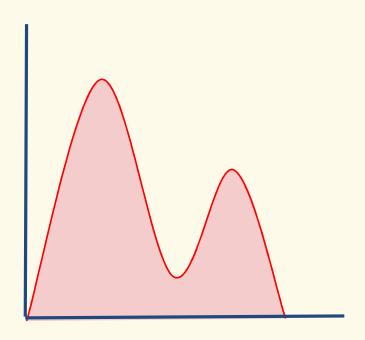
A Discrete Approximation



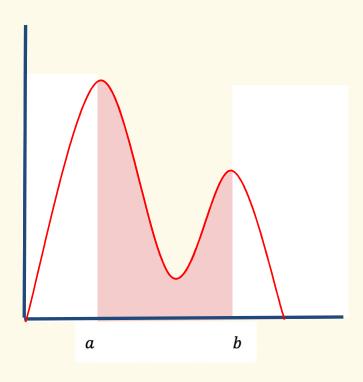
Definition. A continuous random variable X is defined by a **probability density function** (PDF) $f_X: \mathbb{R} \to \mathbb{R}$, such that



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

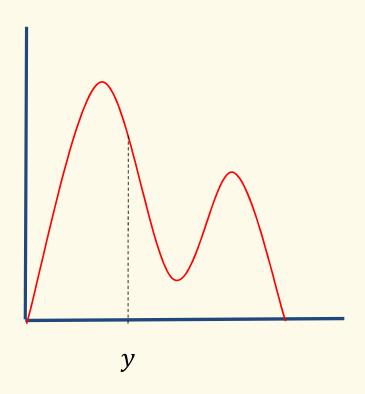


Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

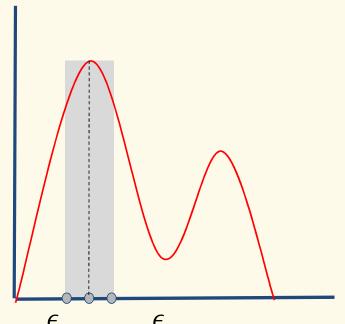


Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

Density
$$\neq$$
 Probability
$$f_X(y) \neq 0 \quad P(X = y) = 0$$



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

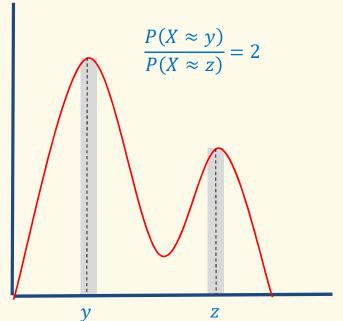
Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$$

What $f_X(x)$ measures: The local **rate** at which probability accumulates



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$$

$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$$
 16

Definition. A continuous random variable X is defined by a **probability density function** (PDF) $f_X: \mathbb{R} \to \mathbb{R}$, such that

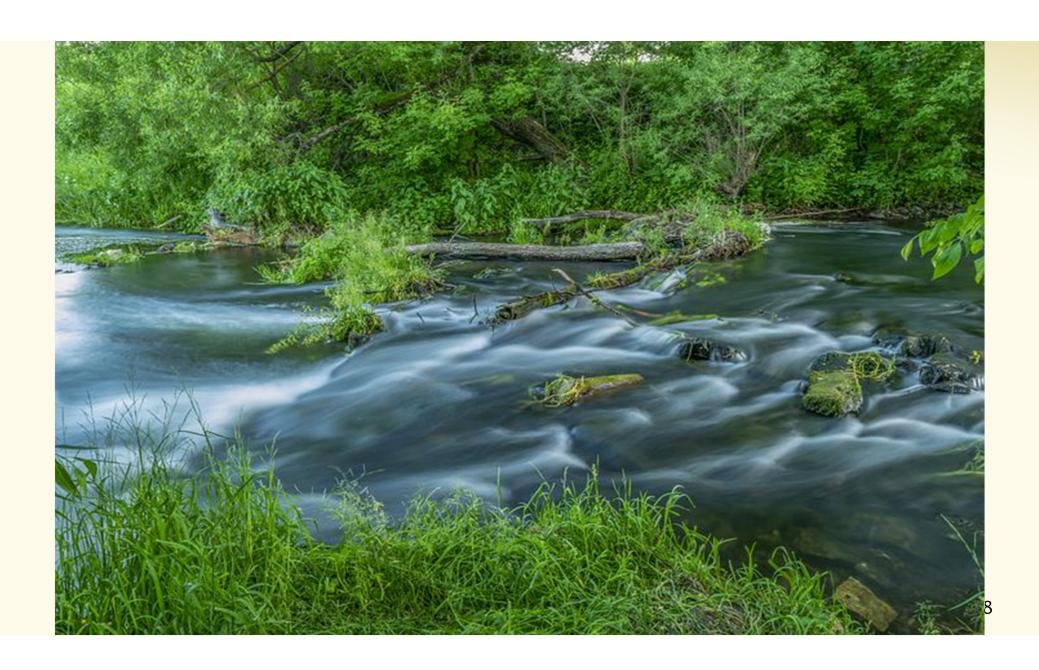
Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$$

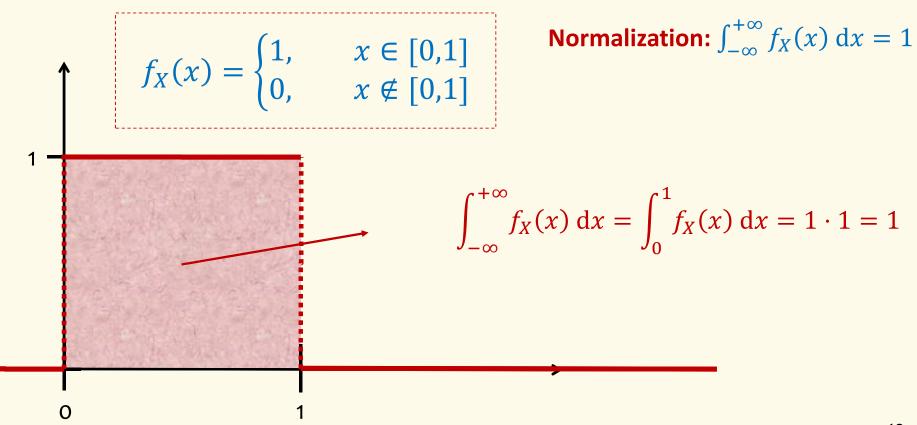
$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$$



PDF of Uniform RV

$$X \sim \text{Unif}(0,1)$$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



Probability of Event

$$X \sim \text{Unif}(0,1)$$

 $f_X(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$

b

 \boldsymbol{a}

0

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization:
$$\int_{-\infty}^{+\infty} f_X(x) dx = 1$$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

1. If
$$0 \le a$$
 and $a \le b \le 1$

$$P(a \le X \le b) = b - a$$

2. If
$$a < 0$$
 and $0 \le b \le 1$

$$P(a \le X \le b) = b$$

3. If
$$a \ge 0$$
 and $b > 1$

$$P(a \le X \le b) = b - a$$

4. If
$$a < 0$$
 and $b > 1$

$$P(a \le X \le b) = 1$$

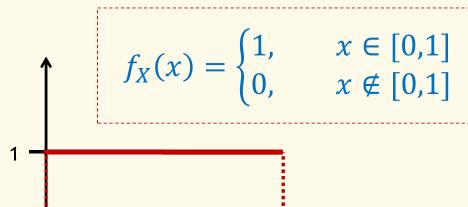
Poll: pollev/paulbeameo28

- A. All of them are correct
- B. Only 1, 2, 4 are right
- C. Only 1 is right
- D. Only 1 and 2 are right

Probability of Event

0

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx \epsilon f_X(y) = \epsilon$$

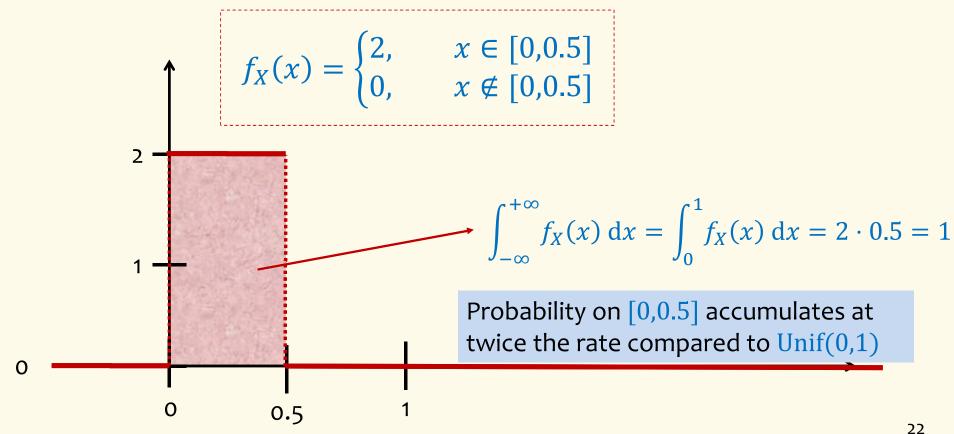
$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$$

PDF of Uniform RV

Density ≠ **Probability**

 $f_X(x) \gg 1$ is possible!

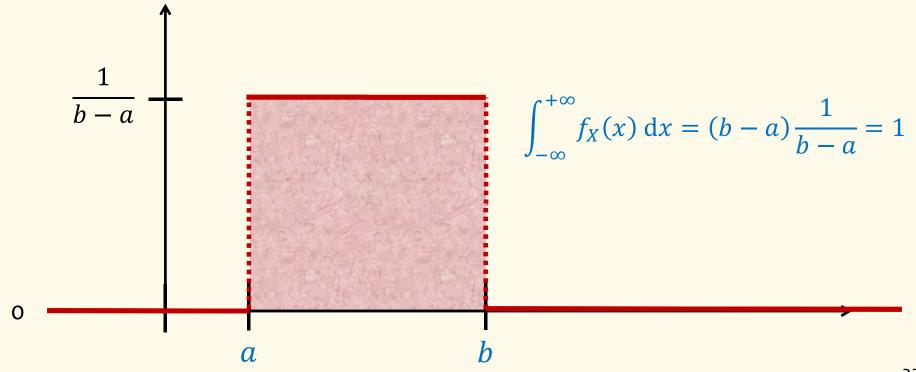
 $X \sim \text{Unif}(0,0.5)$



Uniform Distribution

$$X \sim \text{Unif}(a, b)$$

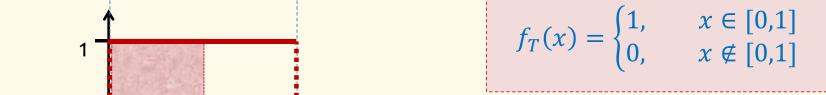
$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$



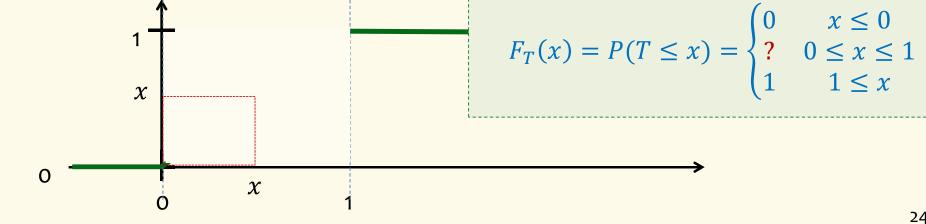
Example. $T \sim \text{Unif}(0,1)$

0

Probability Density Function



Cumulative Distribution Function



 χ

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) \, \mathrm{d}x$$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx} F_X(x)$

Therefore: $P(X \in [a, b]) = F_X(b) - F_X(a)$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

$$\lim_{a\to -\infty} F_X(a) = P(X \le -\infty) = 0 \qquad \lim_{a\to +\infty} F_X(a) = P(X \le +\infty) = 1$$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$