CSE 312 Foundations of Computing II

Lecture 18: Continuity Correction & Distinct Elements

Review CLT

Theorem. (Central Limit Theorem) $X_1, ..., X_n$ i.i.d. with mean μ and variance σ^2 . Let $Y_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$. Then, $\lim_{n \to \infty} Y_n \to \mathcal{N}(0, 1)$

One main application: Use Normal Distribution to Approximate Y_n No need to understand Y_n !!

Agenda

- Continuity correction
- Application: Counting distinct elements

Example – Y_n is binomial

We understand binomial, so we can see how well approximation works

We flip *n* independent coins, heads with probability p = 0.75. X = # heads $\mu = \mathbb{E}(X) = 0.75n$ $\sigma^2 = Var(X) = p(1-p)n = 0.1875n$

n	exact	$\mathcal{N}ig(oldsymbol{\mu},oldsymbol{\sigma}^2ig)$ approx
10	0.4744072	0.357500327
20	0.38282735	0.302788308
50	0.25191886	0.207108089
100	0.14954105	0.124106539
200	0.06247223	0.051235217
1000	0.00019359	0.000130365

$\mathbb{P}(X)$	$K \leq$	0.7	7n)
	≤ 1	U ./	'n)

Example – Naive Approximation

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads?

Exact.
$$\mathbb{P}(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx \boxed{0.2448}$$

Approx. X = # heads $\mu = \mathbb{E}(X) = 0.5n = 20$ $\sigma^2 = Var(X) = 0.25n = 10$

$$\mathbb{P}(20 \le X \le 21) = \Phi\left(\frac{20 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21 - 20}{\sqrt{10}}\right)$$
$$\approx \Phi\left(0 \le \frac{X - 20}{\sqrt{10}} \le 0.32\right)$$
$$= \Phi(0.32) - \Phi(0) \approx 0.1241$$

Example – Even Worse Approximation

Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$\mathbb{P}(X = 20) = {\binom{40}{20}} {\binom{1}{2}}^{40} \approx \boxed{0.1254}$$

Approx. $\mathbb{P}(20 \le X \le 20) = 0$ (13)

Solution – Continuity Correction

Round to next integer!

To estimate probability that discrete RV lands in (integer) interval $\{a, ..., b\}$, compute probability continuous approximation lands in interval $[a - \frac{1}{2}, b + \frac{1}{2}]$

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads? **Exact.** $\mathbb{P}(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx 0.2448$ **Approx.** X = # heads $\mu = \mathbb{E}(X) = 0.5n = 20$ $\sigma^2 = Var(X) = 0.25n = 10$ $\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21.5 - 20}{\sqrt{10}}\right)$ $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.47\right)$ $= \Phi(0.47) - \Phi(-0.16) \approx 0.2452$

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$\mathbb{P}(X = 20) = {\binom{40}{20}} {\binom{1}{2}}^{40} \approx 0.1254$$

Approx.
$$\mathbb{P}(19.5 \le X \le 20.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{20.5 - 20}{\sqrt{10}}\right)$$

 $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16\right)$
 $= \Phi(0.16) - \Phi(-0.16) \approx 0.1272$

Agenda

- Continuity correction
- Application: Counting distinct elements

Data mining – Stream Model

- In many data mining situations, data often not known ahead of time.
 - Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
 - We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model – Problem Setup

Input: sequence (aka. "stream") of *N* elements $x_1, x_2, ..., x_N$ from a known universe *U* (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data ⇒ use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting <u>distinct</u> elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
 - Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
 - Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

- <u>Naïve solution</u>: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: *m* is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4 N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5 Want to compute number of **distinct** IDs in the stream.

How to do this <u>without</u> storing all the elements?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

What is some intuition for this?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

Detour – Min of I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}[\min\{Y_1, \dots, Y_m\}]$?

CDF: Observe that $\min\{Y_1, \dots, Y_m\} \ge y$ if and only if $Y_1 \ge y, \dots, Y_m \ge y$ (Similar to Section 6)

 $P(\min\{Y_1, \dots, Y_m\} \ge y) = P(Y_1 \ge y, \dots, Y_m \ge y)$ $y \in [0,1] = P(Y_1 \ge y) \cdots P(Y_m \ge y) \quad (\text{Independence})$ $= (1-y)^m$ $\Rightarrow P(\min\{Y_1, \dots, Y_m\} \le y) = 1 - (1-y)^m_{20}$

Detour – Min of I.I.D. Uniforms

Useful fact. For any random variable *Y* taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

Proof (Not covered)

$$\mathbb{E}[Y] = \int_0^\infty x \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \left(\int_0^x 1 \, \mathrm{d}y \right) \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \int_0^x f_Y(x) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \iint_{0 \le y \le x \le \infty} f_Y(x) = \int_0^\infty \int_y^\infty f_Y(x) \, \mathrm{d}x \, \mathrm{d}y = \int_0^\infty P(Y \ge y) \, \mathrm{d}y$$

$Y_1, \dots, Y_m \sim \text{Unif}(0, 1)$ (i.i.d.) Detour – Min of I.I.D. Uniforms $Y = \min\{Y_1, \cdots, Y_m\}$ **Useful fact.** For any random variable *Y* taking non-negative values $\mathbb{E}[Y] = \int_{0}^{\infty} P(Y \ge y) \mathrm{d}y$ $\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) dy = \int_0^1 (1-y)^m dy$ $= -\frac{1}{m+1}(1-y)^{m+1} \bigg|_{0}^{1} = 0 - \left(-\frac{1}{m+1}\right) = \frac{1}{m+1}$

Detour – Min of I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}[\min(Y_1, \cdots, Y_m)] = \frac{1}{m+1}$ $\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$ m = 1⁰ $\mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{2}$ 1 m = 2 $\mathbb{E}[\min(Y_1, \cdots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}$ 1 m = 4X 1 0

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

 $x_1 = 5$ $x_2 = 2$ $x_3 = 27$ $x_4 = 35$ $x_5 = 4$ h(5)h(2)h(27)h(35)h(4)

5 distinct elements

→ 5 i.i.d. RVs $h(x_1), ..., h(x_5) \sim \text{Unif}(0,1)$ $\rightarrow \mathbb{E}[\min\{h(x_1), ..., h(x_5)\}] = \frac{1}{5+1} = \frac{1}{6}$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

 $x_1 = 5$ $x_2 = 2$ $x_3 = 27$ $x_4 = 5$ $x_5 = 4$ h(5)h(2)h(27)h(5)h(4)

4 distinct elements

 \Rightarrow 4 i.i.d. RVs $h(x_1), h(x_2), h(x_3), h(x_5) \sim \text{Unif}(0,1)$ and $h(x_1) = h(x_4)$

 $\Rightarrow \mathbb{E}[\min\{h(x_1), \dots, h(x_5)\}] = \mathbb{E}[\min\{h(x_1), h(x_2), h(x_3), h(x_5)\}] = \frac{1}{4+1}$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

The MinHash Algorithm – Idea

$$m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$$

- 1. Compute val = $\min\{h(x_1), ..., h(x_N)\}$
- 2. Assume that val $\approx \mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]$

3. Output round
$$\left(\frac{1}{\text{val}} - 1\right)$$

The MinHash Algorithm – Implementation

MinHash Example

Stream: 13, 25, 19, 25, 19, 19 Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

	Poll: pollev.com/paulbeameo28
What does MinHash return?	a. 1
	b. 3
	c. 5
	d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23 Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is
$$\frac{1}{0.1} - 1 = 9$$
 Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1

The MinHash Algorithm – Problem

Algorithm MinHash $(x_1, x_2, ..., x_N)$ val $\leftarrow \infty$ for i = 1 to N do But, val is not $\mathbb{E}[val]!$ val \leftarrow min{val, $h(x_i)$ } How far is val from $\mathbb{E}[val]$? return round $\left(\frac{1}{\text{val}} - 1\right)$ $Var(val) \approx \frac{1}{(m+1)^2}$ $val = \min\{h(x_1), \dots, h(x_N)\} \quad \mathbb{E}[val] = \frac{1}{m+1}$

How can we reduce the variance?

Idea: Repetition to reduce variance! Use k independent hash functions $h^1, h^2, \dots h^k$

Algorithm MinHash $(x_1, x_2, ..., x_N)$

 $val_{1}, ..., val_{k} \leftarrow \infty$ for i = 1 to N do $val_{1} \leftarrow \min\{val_{1}, h^{1}(x_{i})\}, ..., val_{k} \leftarrow \min\{val_{k}, h^{k}(x_{i})\}$ $val \leftarrow \frac{1}{k} \sum_{i=1}^{k} val_{i}$ $Var(val) = \frac{1}{k} \frac{1}{(m+1)^{2}}$

MinHash and Estimating # of Distinct Elements in Practice

- MinHash in practice:
 - One also stores the element that has the minimum hash value for each of the k hash functions
 - Then, just given separate MinHashes for sets A and B, can also estimate — what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice:

 HyperLoglog
 even more space efficient but doesn't have
 the set combination properties of MinHash