CSE 312 Foundations of Computing II

Lecture 18: Continuity Correction \& Distinct Elements

Review CLT

Theorem. (Central Limit Theorem) X_{1}, \ldots, X_{n} i.i.d. with mean μ and variance σ^{2}. Let $Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}$. Then,

$$
\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)
$$

One main application:
Use Normal Distribution to Approximate Y_{n}
No need to understand $Y_{n}!!$

Agenda

- Continuity correction
- Application: Counting distinct elements

Example - Y_{n} is binomial

We understand binomial, so we can see how well approximation works
We flip n independent coins, heads with probability $p=0.75$.
$X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.75 n \quad \sigma^{2}=\operatorname{Var}(X)=p(1-p) n=0.1875 n$

$$
\mathbb{P}(X \leq 0.7 n)
$$

n	exact	$\mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)$ approx
10	0.4744072	0.357500327
20	0.38282735	0.302788308
50	0.25191886	0.207108089
100	0.14954105	0.124106539
200	0.06247223	0.051235217
1000	0.00019359	0.000130365

Example - Naive Approximation

Fair coin flipped (independently) $\mathbf{4 0}$ times. Probability of $\mathbf{2 0}$ or $\mathbf{2 1}$ heads?
Exact. $\mathbb{P}(X \in\{20,21\})=\left[\binom{40}{20}+\binom{40}{21}\right]\left(\frac{1}{2}\right)^{40} \approx 0.2448$
Approx. $X=$ \# heads $\mu=\mathbb{E}(X)=0.5 n=20 \quad \sigma^{2}=\operatorname{Var}(X)=0.25 n=10$

$$
\begin{align*}
\mathbb{P}(20 \leq X \leq 21) & =\Phi\left(\frac{20-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{21-20}{\sqrt{10}}\right) \\
& \approx \Phi\left(0 \leq \frac{X-20}{\sqrt{10}} \leq 0.32\right) \tag{O}\\
& =\Phi(0.32)-\Phi(0) \approx 0.1241
\end{align*}
$$

Example - Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ heads?
Exact. $\mathbb{P}(X=20)=\binom{40}{20}\left(\frac{1}{2}\right)^{40} \approx 0.1254$

Approx. $\mathbb{P}(20 \leq X \leq 20)=0$

Solution - Continuity Correction

Round to next integer!

To estimate probability that discrete RV lands in (integer) interval $\{a, \ldots, b\}$, compute probability continuous approximation lands in interval $\left[a-\frac{1}{2}, b+\frac{1}{2}\right]$

Example - Continuity Correction

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ or $\mathbf{2 1}$ heads?
Exact. $\mathbb{P}(X \in\{20,21\})=\left[\binom{40}{20}+\binom{40}{21}\right]\left(\frac{1}{2}\right)^{40} \approx 0.2448$
Approx. $\quad X=\#$ heads $\mu=\mathbb{E}(X)=0.5 n=20 \quad \sigma^{2}=\operatorname{Var}(X)=0.25 n=10$

$$
\begin{gathered}
\mathbb{P}(19.5 \leq X \leq 21.5)=\Phi\left(\frac{19.5-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{21.5-20}{\sqrt{10}}\right) \\
\approx \Phi\left(-0.16 \leq \frac{X-20}{\sqrt{10}} \leq 0.47\right) \\
=\Phi(0.47)-\Phi(-0.16) \approx 0.2452
\end{gathered}
$$

Example - Continuity Correction

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ heads?
Exact. $\mathbb{P}(X=20)=\binom{40}{20}\left(\frac{1}{2}\right)^{40} \approx 0.1254$
Approx. $\mathbb{P}(19.5 \leq X \leq 20.5)=\Phi\left(\frac{19.5-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{20.5-20}{\sqrt{10}}\right)$

$$
\begin{aligned}
& \approx \Phi\left(-0.16 \leq \frac{X-20}{\sqrt{10}} \leq 0.16\right) \\
& =\Phi(0.16)-\Phi(-0.16) \approx 0.1272
\end{aligned}
$$

Agenda

- Continuity correction
- Application: Counting distinct elements

Data mining - Stream Model

- In many data mining situations, data often not known ahead of time.
- Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
- We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model - Problem Setup

Input: sequence (aka. "stream") of N elements $x_{1}, x_{2}, \ldots, x_{N}$ from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data \Rightarrow use minimal amount of storage while maintaining working "summary"

What can we compute?

$$
32,12,14,32,7,12,32,7,32,12,4
$$

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the distinct view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 distinct view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
- Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
- Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=$ \# of IDs in the stream = 11, $m=\#$ of distinct IDs in the stream =5
Want to compute number of distinct IDs in the stream.

- Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: m is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=$ \# of IDs in the stream = 11, $m=\#$ of distinct IDs in the stream =5
Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

Y_{1} has expected value $1 / 2$
... but probably isn't very close to the middle
... and Y_{2} is more likely to be in the bigger gap
$m=2$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}\left[\min \left\{Y_{1}, \cdots, Y_{m}\right\}\right]$?

CDF: Observe that $\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y$ if and only if $Y_{1} \geq y, \ldots, Y_{m} \geq y$
(Similar to Section 6)

$$
\begin{aligned}
P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y\right) & =P\left(Y_{1} \geq y, \ldots, Y_{m} \geq y\right) \\
y \in[0,1] & =P\left(Y_{1} \geq y\right) \cdots P\left(Y_{m} \geq y\right) \quad \text { (Independence) } \\
& =(1-y)^{m} \\
& \Rightarrow P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \leq y\right)=1-(1-y)^{m}{ }_{20}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

Proof (Not covered)

$$
\begin{aligned}
\mathbb{E}[Y]=\int_{0}^{\infty} x \cdot f_{Y}(x) \mathrm{d} x & =\int_{0}^{\infty}\left(\int_{0}^{x} 1 \mathrm{~d} y\right) \cdot f_{Y}(x) \mathrm{d} x=\int_{0}^{\infty} \int_{0}^{x} f_{Y}(x) \mathrm{d} y \mathrm{~d} x \\
& =\iint_{0 \leq y \leq x \leq \infty} f_{Y}(x)=\int_{0}^{\infty} \int_{y}^{\infty} f_{Y}(x) \mathrm{d} x \mathrm{~d} y=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

$$
\begin{aligned}
& Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1) \text { (i.i.d.) } \\
& Y=\min \left\{Y_{1}, \cdots, Y_{m}\right\}
\end{aligned}
$$

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

$$
\begin{aligned}
\mathbb{E}[Y] & =\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y=\int_{0}^{1}(1-y)^{m} \mathrm{~d} y \\
& =-\left.\frac{1}{m+1}(1-y)^{m+1}\right|_{0} ^{1}=0-\left(-\frac{1}{m+1}\right)=\frac{1}{m+1_{22}}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{array}{ccccc}
x_{1}=5 & x_{2}=2 & x_{3}=27 & x_{4}=35 & x_{5}=4 \\
h(5) & h(2) & h(27) & h(35) & h(4)
\end{array}
$$

5 distinct elements

$$
\begin{aligned}
& \rightarrow 5 \text { i.i.d. RVs } h\left(x_{1}\right), \ldots, h\left(x_{5}\right) \sim \operatorname{Unif}(0,1) \\
& \\
& \quad \rightarrow \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{5}\right)\right\}\right]=\frac{1}{5+1}=\frac{1}{6}
\end{aligned}
$$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{array}{ccccc}
x_{1}=5 & x_{2}=2 & x_{3}=27 & x_{4}=5 & x_{5}=4 \\
h(5) & h(2) & h(27) & \mathrm{h}(5) & h(4)
\end{array}
$$

4 distinct elements

$$
\Rightarrow 4 \text { i.i.d. } \operatorname{RVs} h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right), h\left(x_{5}\right) \sim \operatorname{Unif}(0,1) \text { and } h\left(x_{1}\right)=h\left(x_{4}\right)
$$

$\Rightarrow \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{5}\right)\right\}\right]=\mathbb{E}\left[\min \left\{h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right), h\left(x_{5}\right)\right\}\right]=\frac{1}{4+1}$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{gathered}
x_{1}, x_{2}, \ldots, x_{N} \text { contains } m \text { distinct elements } \\
h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{N}\right) \text { contains } m \text { i.i.d. rvs } \sim \operatorname{Unif}(0,1) \\
\text { and } N-m \text { repeats } \\
\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]=\frac{1}{m+1} \longleftrightarrow m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]}-1
\end{gathered}
$$

The MinHash Algorithm - Idea

$$
m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]}-1
$$

1. Compute val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$
2. Assume that val $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$
3. Output round $\left(\frac{1}{\mathrm{val}}-1\right)$

The MinHash Algorithm - Implementation

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$$
\mathrm{val} \leftarrow \infty
$$

$$
\text { for } i=1 \text { to } N \text { do }
$$

val $\leftarrow \min \left\{v a l, h\left(x_{i}\right)\right\}$
return round $\left(\frac{1}{\text { val }}-1\right)$

MinHash Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does
MinHash return?

Poll: pollev.com/paulbeame028
a. 1
b. 3
c. 5
d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23
Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is $\frac{1}{0.1}-1=9 \quad$ Clearly, not a very good answer!
Not unlikely: $P(h(x)<0.1)=0.1$

The MinHash Algorithm - Problem

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
val $\leftarrow \infty$
for $i=1$ to N do

$$
\operatorname{val} \leftarrow \min \left\{\operatorname{val}, h\left(x_{i}\right)\right\}
$$

return round $\left(\frac{1}{\mathrm{val}}-1\right)$

But, val is not $\mathbb{E}[$ val $]$!
How far is val from $\mathbb{E}[$ val $]$?
$\operatorname{Var}(\operatorname{val}) \approx \frac{1}{(m+1)^{2}}$
val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\} \quad \mathbb{E}[$ val $]=\frac{1}{m+1}$

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$
Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
$\operatorname{val}_{1}, \ldots, \operatorname{val}_{\mathrm{k}} \leftarrow \infty$
for $i=1$ to N do
$\operatorname{val}_{1} \leftarrow \min \left\{\operatorname{val}_{1}, h^{1}\left(x_{i}\right)\right\}, \ldots, \operatorname{val}_{\mathrm{k}} \leftarrow \min \left\{\operatorname{val}_{k}, h^{k}\left(x_{i}\right)\right\}$
$\mathrm{val} \leftarrow \frac{1}{k} \sum_{i=1}^{k} \operatorname{val}_{\mathrm{i}}$
return round $\left(\frac{1}{\mathrm{val}}-1\right)$

$$
\operatorname{Var}(\mathrm{val})=\frac{1}{k} \frac{1}{(m+1)^{2}}
$$

MinHash and Estimating \# of Distinct Elements in Practice

- MinHash in practice:
- One also stores the element that has the minimum hash value for each of the k hash functions
- Then, just given separate MinHashes for sets A and B, can also estimate - what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice:
- HyperLoglog - even more space efficient but doesn't have the set combination properties of MinHash

