CSE 312 Foundations of Computing II

Lecture 19: Joint Distributions

Midterm

- Section B scores released at 2:30pm after class
- Breathe \& relax!

Median: 79.5; Average: 76.85 [Sections A + B]

Scores	$90+$	$80 s$	$70 s$	$60 s$	$50 s$	<50
\# of students	35	42	43	22	16	8

- Solutions will be available on Canvas Pages
- Regrade requests via e-mail only (to me) for major issues.

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Conditional Expectation and Law of Total Expectation

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a large amount of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop

Review Cartesian Product

Definition. Let A and B be sets. The Cartesian product of A and B is denoted

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Example.

$$
\{1,2,3\} \times\{4,5\}=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
$$

If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.
The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^{2})

Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega_{X, Y}=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega_{X} \times \Omega_{Y}
$$

Note that

$$
\sum_{(s, t) \in \Omega_{X, Y}} p_{X, Y}(s, t)=1
$$

Example - Weird Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die.
$\Omega_{X}=\{1,2,3,4\}$ and $\Omega_{Y}=\{1,2,3,4\}$

In this problem, the joint PMF is if
$p_{X, Y}(x, y)= \begin{cases}1 / 16 & \text { if } x, y \in \Omega_{X, Y} \\ 0 & \text { otherwise }\end{cases}$

$\mathrm{X} \mid \mathrm{Y}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{2}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{3}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{4}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$

and the joint range is (since all combinations have non-zero probability)
$\Omega_{X, Y}=\Omega_{X} \times \Omega_{Y}$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{\underline{\Omega_{U} W}}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \Omega_{U} \times \Omega_{W}$

Poll: pollev.com/paulbeame028
What is $p_{U, W}(1,3)=P(U=1, W=3)$?
a. $1 / 16$
b. $2 / 16$
c.
c. $1 / 2$
d. Not sure

U\|w	1	2	3	4
1				
2				
3				
4				

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{U, W}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \neq \Omega_{U} \times \Omega_{W}$

The joint PMF $p_{U, W}(u, w)=P(U=u, W=w)$ is
$p_{U, W}(u, w)= \begin{cases}2 / 16 & \text { if }(u, w) \in \Omega_{U} \times \Omega_{W} \text { where } w>u \\ 1 / 16 & \text { if }(u, w) \in \Omega_{U} \times \Omega_{W} \text { where } w=u \\ 0 & \text { otherwise }\end{cases}$

U\|w	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Example - Weirder Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $P(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?

Just apply LTP over the possible values of W :

$$
\begin{aligned}
& p_{U}(1)=7 / 16 \\
& p_{U}(2)=5 / 16 \\
& p_{U}(3)=3 / 16 \\
& p_{U}(4)=1 / 16
\end{aligned}
$$

U\|w	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
p_{X}(a)=\sum_{b \in \Omega_{Y}} p_{X, Y}(a, b)
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega_{X}} p_{X, Y}(a, b)$

Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y$
The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

Independence and joint distributions

Definition. Discrete random variables X and Y are independent iff

- $p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)$ for all $x \in \Omega_{X}, y \in \Omega_{Y}$

Definition. Continuous random variables X and Y are independent iff

- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$ for all $x, y \in \mathbb{R}$

Example - Uniform distribution on a unit disk

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The expectation of some function $g(x, y)$ with inputs X and Y

$$
\mathbb{E}[g(X, Y)]=\sum_{a \in \Omega_{X}} \sum_{b \in \Omega_{Y}} g(a, b) \cdot p_{X, Y}(a, b)
$$

Brain Break

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Conditional Expectation and Law of Total Expectation

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot \underbrace{P(X=x \mid A})
$$

Notes:

- Can be phrased as a "random variable version"

$$
\mathbb{E}[X \mid Y=y]
$$

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$
\begin{align*}
\mathbb{E}[X] & =\sum_{x \in \Omega_{X}} x \cdot \underbrace{P(X=x)} \\
& =\sum_{x \in \Omega_{X}} x \cdot \sum_{i=1}^{n} P\left(X=x \mid A_{i}\right) \cdot P\left(A_{i}\right) \tag{byLTP}\\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \sum_{x \in \Omega_{X}} x \cdot P\left(X=x \mid A_{i}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \cdot \mathbb{E}\left[X \mid A_{i}\right]
\end{align*}
$$

(change order of sums)
(def of cond. expect.)

Example - Flipping a Random Number of Coins

Suppose someone gave us $Y \sim$ Poi fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$
\begin{aligned}
\left.\mathbb{E}[X]=\sum_{i=0}^{\infty} \mathbb{E}[X \mid Y=i]\right) P(Y=i) & =\sum_{i=0}^{\infty}\left(\frac{i}{2}\right) P(Y=i) \\
& =\frac{1}{2} \cdot\left(\sum_{i=0}^{\infty} i \cdot P(Y=i)\right. \\
& =\frac{1}{2} \cdot \mathbb{E}[Y]=\frac{1}{2} \cdot 5=2.5
\end{aligned}
$$

Example - Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability p (independently of other steps).
Let X be the number of steps it takes your computer to fail.
What is $\mathbb{E}[X]$?
Let Y be the indicator random variable for the event of failure in step 1
Then by LTE, $\mathbb{E}[X]=\mathbb{E}[X \mid Y=1] \cdot P(Y=1)+\mathbb{E}[X \mid Y=0] \cdot P(Y=0)$

$$
=1 \cdot p+\mathbb{E}[X \mid Y=0] \cdot(1-p)
$$

$$
=p+(1+\mathbb{E}[X]) \cdot(1-p) \quad \text { since if } Y=0 \text { experiment }
$$ starting at step 2 looks like original experiment

Solving we get $\mathbb{E}[X]=1 / p$

Covariance: How correlated are X and Y ?

Recall that if X and Y are independent, $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The covariance of random variables X and Y,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

Two Covariance examples:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Suppose $X \sim \operatorname{Bernoulli}(p)$

If random variable $Y=X$ then

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\operatorname{Var}(X)=p(1-p)
$$

If random variable $Z=-X$ then

$$
\begin{aligned}
\operatorname{Cov}(X, Z) & =\mathbb{E}[X Z]-\mathbb{E}[X] \cdot \mathbb{E}[Z] \\
& =\mathbb{E}\left[-X^{2}\right]-\mathbb{E}[X] \cdot \mathbb{E}[-X] \\
& =-\mathbb{E}\left[X^{2}\right]+\mathbb{E}[X]^{2}=-\operatorname{Var}(X)=-p(1-p)
\end{aligned}
$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{S \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

