CSE 312 Foundations of Computing II

Lecture 20: Tail Bounds

Review Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega_{X,Y} = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$

Note that

$$\sum_{(s,t)\in\Omega_{X,Y}}p_{X,Y}(s,t)=1$$

2

Review Continuous distributions on $\mathbb{R} \times \mathbb{R}$

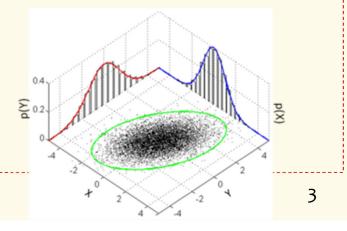
Definition. The joint probability density function (PDF) of continuous random variables *X* and *Y* is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X,Y}(x,y) \ge 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_A f_{X,Y}(x, y) dxdy$

The (marginal) PDFs f_X and f_Y are given by

- $-f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$
- $-f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x$



Review Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{N} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let *X* be a random variable and *Y* be a discrete random variable. Then, $\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Covariance: How correlated are *X* and *Y*?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The **covariance** of random variables *X* and *Y*, $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

$\operatorname{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Two Covariance examples:

Suppose *X* ~ Bernoulli(*p*)

If random variable
$$Y = X$$
 then
 $Cov(X, Y) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = Var(X) = p(1-p)$
 $W = 1 - X$ Some
If random variable $Z = -X$ then
 $Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]$
 $Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]$
 $Z = \begin{cases} -1 & \text{or } P \\ 0 & \text{or } (-P) \end{cases}$
 $Z = -\mathbb{E}[X^2] = \mathbb{E}[X]^2 = -Var(X) = -p(1-p)$
 $W = \mathbb{E}[X^2] + \mathbb{E}[X]^2 = -Var(X) = -p(1-p)$
 $W = \mathbb{E}[X^2] + \mathbb{E}[X]^2 = -Var(X) = -p(1-p)$

Agenda

- Covariance
- Markov's Inequality 🗨
- Chebyshev's Inequality

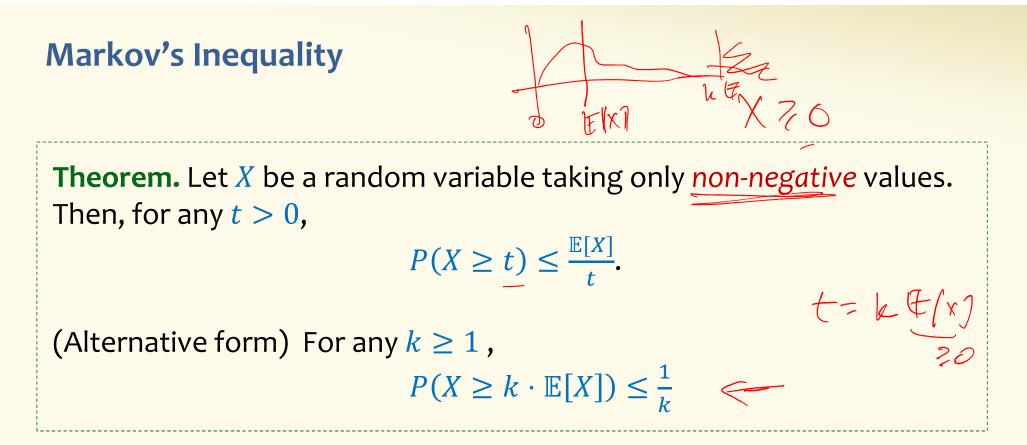
Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

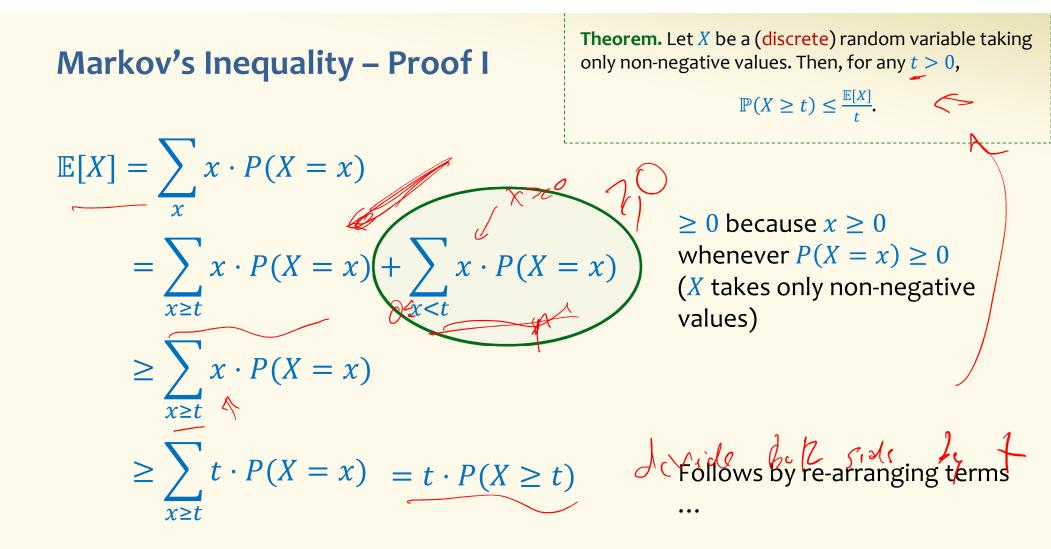
 $\underbrace{P(X \ge a) \le b}_{P(|X - \mathbb{E}[X]| \ge a)}$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly



Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of X.



Markov's Inequality – Proof II

Theorem. Let *X* be a (continuous) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

$$\mathbb{E}[X] = \int_{0}^{\infty} x \cdot f_{X}(x) \, dx$$

$$= \int_{t}^{\infty} x \cdot f_{X}(x) \, dx + \int_{0}^{t} x \cdot f_{X}(x) \, dx$$

$$\geq \int_{t}^{\infty} x \cdot f_{X}(x) \, dx$$

$$\geq \int_{t}^{\infty} t \cdot f_{X}(x) \, dx = t \cdot \int_{t}^{\infty} f_{X}(x) \, dx = t \cdot P(X \ge t)$$

so $P(X \ge t) \le \mathbb{E}[X]/t$ as before

12

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$P(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}[X] = \frac{1}{p}$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Can we do better?

Example

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 75 or more ads.

 Poll: pollev.com/paulbeame028

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

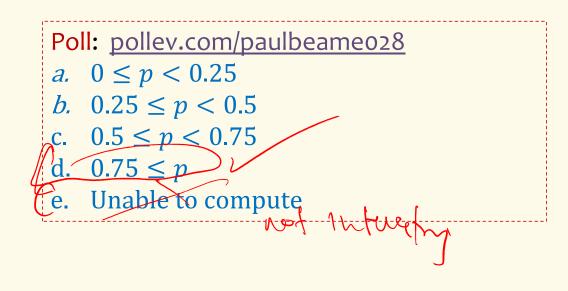
 e. Unable to compute

Tu about range doer the Markon Prequal Ptr. Bound Tie P Actual bound: ETX1.27-3

Example

1/3 we have $7\int adg P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$ 2/3 we have O adj

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.



Actual bound: 1 (Marka

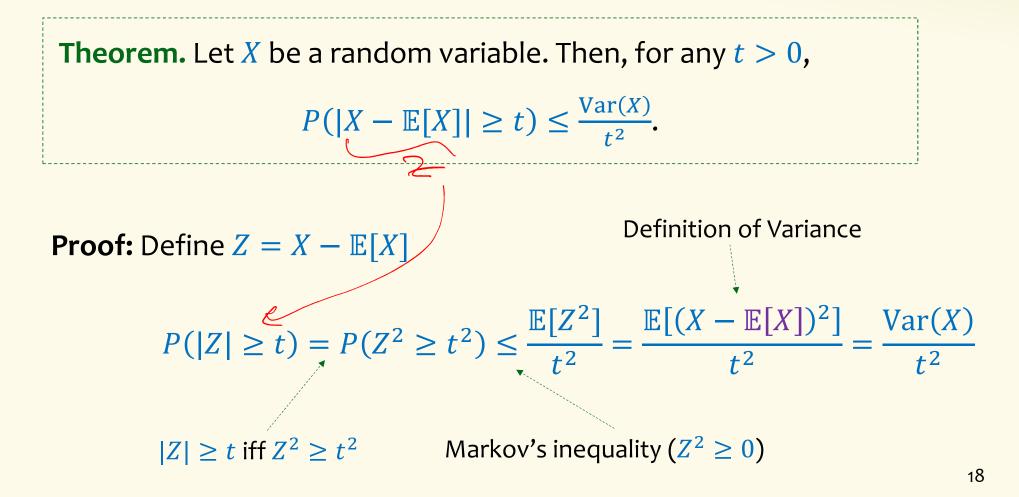
15

Brain Break

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

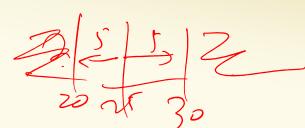
Chebyshev's Inequality

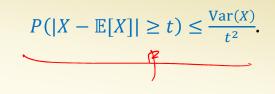


Example – Geometric Random Variable

Let X be geometric RV with parameter p $P(X = i) = (1 - p)^{i - 1} p$ $\mathbb{E}[X] = \left(\frac{1}{p}\right)$ $Var(X) = \frac{1 - p}{p^2}$ What is the probability that $X \ge 2\mathbb{E}(X) = 2/2$ <u>Markov:</u> $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$ <u>Chebyshev:</u> $P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$ Better if p > 1/2

Example





Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

 Poll: pollev.com/paulbeame028

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

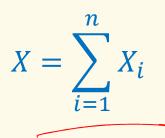
 e. Unable to compute

Achal been $\frac{1}{100}$ Van = $\frac{100}{100} = \frac{100}{100} = \frac{100}{100}$ $\frac{100}{100} = \frac{100}{100} = \frac{100}{100}$

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability <u>p</u>?

X = # of flips until n times "heads" $X_i = #$ of flips between (i - 1)-st and i-th "heads"



Note: X_1 , ..., X_n are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability <u>p</u>?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbb{E}[X_{i}] = \frac{n}{p} \quad \text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_{i}) = \frac{n(1-p)}{p^{2}}$$
What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?
$$\underline{\text{Markov: }} P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$$

$$\underline{\text{Chebyshev: }} P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\text{Var}(X)}{\mathbb{E}[X]} = \frac{1-p}{n}$$
Goes to zero as $n \to \infty$ \odot

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.