
CSE 312

Foundations of Computing II

Lecture 20: Tail Bounds
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Review Joint PMFs and Joint Range
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Definition. Let � and � be discrete random variables. The Joint PMF  
of � and � is

��,�(�, 	) = � (� = �, � = 	)

Definition. The joint range of ��,� is

Ω�,� = �, � ∶ ��,� �, � > 0 ⊆ Ω� × Ω�

Note that

� ��,� �, � = 1
�

�,� ∈��, 



Review Continuous distributions on ℝ × ℝ
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Definition. The joint probability density function (PDF) of continuous 
random variables � and � is a function "�,� defined on ℝ � ℝ such that 

• "�,� #, $ % 0 for all #, $ ∈ ℝ
• & & "�,� #, $ d# d$ � 1(

)(
(

)(
for * ⊆ ℝ � ℝ the probability that �, � ∈ * is ∬ "�,� #, $  d#d$,
The  (marginal) PDFs "� and "� are given by

– "� # � & "�,� #, $  d$(
)(

– "� $ � & "�,� #, $  d#(
)(



Review Law of Total Expectation
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Law of Total Expectation (event version). Let � be a random variable 
and let events *-, … , */ partition the sample space. Then,

0[�] � � 0 �  *3 ⋅ � (*3)
/

35-

Law of Total Expectation (random variable version). Let � be a 
random variable and � be a discrete random variable. Then,

0[�] � � 0 �  � � $ ⋅ � (� � $)
�

6 ∈� 



Agenda

• Covariance

• Markov’s Inequality

• Chebyshev’s Inequality
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Covariance:  How correlated are � and �? 

Recall that if � and � are independent, 0 �� � 0 � ⋅ 0[�]

Definition:  The covariance of random variables � and �,
Cov �, � � 0 �� − 0 � ⋅ 0[�]

Unlike variance, covariance can be positive or negative.  It has 
has value 0 if the random variables are independent.
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Two Covariance examples:
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Cov �, � � 0 �� − 0 � ⋅ 0[�]

Suppose � ∼ Bernoulli(�)

If random variable � � � then
Cov �, � � 0 �C − 0 � C � Var � � �(1 − �)

If random variable F � −� then
Cov �, F � 0 �F − 0 � ⋅ 0 F

� 0 −�C − 0 � ⋅ 0 −�
� −0 �C + 0 � C � −Var � � −�(1 − �)



Agenda

• Covariance

• Markov’s Inequality

• Chebyshev’s Inequality
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Tail Bounds (Idea)

Bounding the probability that a random variable is far from its 
mean. Usually statements of the form:

� � % � ≤ 	
� |� − 0 � | % � ≤ 	

Useful tool when

• An approximation that is easy to compute is sufficient

• The process is too complex to analyze exactly
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Markov’s Inequality 
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Theorem. Let � be a random variable taking only non-negative values. 
Then, for any � > 0,

� � % � ≤ 0[�]
� . 

(Alternative form)  For any J % 1 ,

� � % J ⋅ 0 � ≤ -
K

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of �.



Markov’s Inequality – Proof I  
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Theorem. Let � be a (discrete) random variable taking 
only non-negative values. Then, for any � > 0,

ℙ � % � ≤ 0[�]
� . 

0[�] � � # ⋅ �(� � #)
�

M
� � # ⋅ �(� � #)

�

MN�
+ � # ⋅ �(� � #)

�

MO�

% � # ⋅ �(� � #)
�

MN�

% � � ⋅ �(� � #)
�

MN�
� � ⋅ �(� % �)

% 0 because # % 0
whenever � � � # % 0
(� takes only non-negative 
values)  

Follows by re-arranging terms 
… 



Markov’s Inequality – Proof II  
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Theorem. Let � be a (continuous) random variable 
taking only non-negative values. Then, for any � > 0,

ℙ � % � ≤ 0[�]
� . 

0[�] � P # ⋅ "� #  d#
(

Q

� P # ⋅ "� #  d# 
(

�
+ P # ⋅ "� #  d#

�

Q

% P # ⋅ "� #  d# 
(

�

% P � ⋅ "� #  d# 
(

�
� � ⋅ P "� #  d# 

(

�
� � ⋅ �(� % �)

so  � � % � ≤ 0[�]/� as before



Example – Geometric Random Variable

Let � be geometric RV with parameter �
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� � � S � 1 − � 3)-� 0[�] � 1
�

“� is the number of times Alice needs to flip a biased coin until she sees heads, if 

heads occurs with probability �?

What is the probability that � % 20[�] � 2/�? 

Markov’s inequality: � � % 20[�] ≤ -
C Can we do better?



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 75 or more ads. 
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Poll:  pollev.com/paulbeame028
a. 0 ≤ � < 0.25
b. 0.25 ≤ � < 0.5
c. 0.5 ≤ � < 0.75
d. 0.75 ≤ �
e. Unable to compute

� � % J ⋅ 0 � ≤ 1
J



� � % J ⋅ 0 � ≤ 1
JExample

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 20 or more ads. 
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Poll:  pollev.com/paulbeame028
a. 0 ≤ � < 0.25
b. 0.25 ≤ � < 0.5
c. 0.5 ≤ � < 0.75
d. 0.75 ≤ �
e. Unable to compute



Brain Break



Agenda

• Covariance

• Markov’s Inequality

• Chebyshev’s Inequality
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Chebyshev’s Inequality 
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Theorem. Let � be a random variable. Then, for any � > 0,

� |� − 0[�]| % � ≤ _`a �
�b . 

Proof: Define F � � − 0[�]

� |F| % � � � FC % �C ≤ 0[FC]
�C � 0 � − 0 � C

�C � Var �
�C

Markov’s inequality (FC % 0)

Definition of Variance

|F| % � iff FC % �C



Example – Geometric Random Variable

Let � be geometric RV with parameter �
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� � � S � 1 − � 3)-� 0[�] � 1
�

What is the probability that � % 20 � � 2/�? 

Markov: � � % 20[�] ≤ -
C

Var � � 1 − �
�C

Chebyshev: � � % 20[�] ≤ � � − 0[�] % 0[�] ≤ _`a �
0 � b � 1 − �

Better if � > 1/2 



Example

Suppose that the average number of ads you will see on a 
website is 25 and the standard deviation of the number of ads 
is 4. Give an upper bound on the probability of seeing a 
website with 30 or more ads. 
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Poll:  pollev.com/paulbeame028
a. 0 ≤ � < 0.25
b. 0.25 ≤ � < 0.5
c. 0.5 ≤ � < 0.75
d. 0.75 ≤ �
e. Unable to compute

� |� − 0[�]| % � ≤ _`a �
�b . 



Chebyshev’s Inequality – Repeated Experiments
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“How many times does Alice need to flip a biased coin until she sees heads c times, if 

heads occurs with probability �?

� � # of flips until c times “heads”

�3 � # of flips between (S − 1)-st and S-th “heads”
� � � �3

/

35-

Note: �-, … , �/ are independent and geometric with parameter �

0 � � 0 � �3
/

35-
� � 0[�3

/

35-
] � c

� Var � � � Var(�3
/

35-
) � c 1 − �

�C



“How many times does Alice need to flip a biased coin until she sees heads c times, if 

heads occurs with probability �?

Chebyshev’s Inequality – Coin Flips
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What is the probability that � % 20[�] � 2c/�? 

Markov: � � % 20[�] ≤ -
C

Chebyshev: � � % 20[�] ≤ � � − 0[�] % 0[�] ≤ _`a �
0 � b � -)d

/
Goes to zero as c → ∞ 

0 � � 0 � �3
/

35-
� � 0[�3

/

35-
] � c

� Var � � � Var(�3
/

35-
) � c 1 − �

�C



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.

– Very often loose upper-bounds are okay when designing for the 
worst case

Generally (but not always) making more assumptions about 
your random variable leads to a more accurate upper-bound.
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