CSE 312
 Foundations of Computing II

Lecture 20: Tail Bounds

Review Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega_{X, Y}=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega_{X} \times \Omega_{Y}
$$

Note that

$$
\sum_{(s, t) \in \Omega_{X, Y}} p_{X, Y}(s, t)=1
$$

Review Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$
for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y$
The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

Review Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Covariance: How correlated are X and Y ?

Recall that if X and Y are independent, $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The covariance of random variables X and Y,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

Two Covariance examples:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Suppose $X \sim \operatorname{Bernoulli}(p)$

If random variable $Y=X$ then

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\operatorname{Var}(X)=p(1-p)
$$

If random variable $Z=-X$ then

$$
W=1-x \text { Same }
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Z) & =\mathbb{E}[X Z]-\mathbb{E}[X] \cdot \mathbb{E}[Z] \\
& =\mathbb{E}\left[-X^{2}\right]-\mathbb{E}[X] \cdot \mathbb{E}[-X] \\
\text { not indepredat of } X & =-\mathbb{E}\left[X^{2}\right]+\mathbb{E}[X]^{2}=-\operatorname{Var}(X)=-p(1-p)
\end{aligned}
$$

$$
\operatorname{Cov}(X, Z)=\mathbb{E}[X Z]-\mathbb{E}[X] \cdot \mathbb{E}[Z]
$$

Agenda

- Covariance
- Markov's Inequality
- Chebyshev’s Inequality

Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

$$
\frac{P(X \geq a) b}{P(|X-\mathbb{E}[X]| \geq a) \leq b}
$$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

(Alternative form) For any $k \geq 1$,

$$
P(X \geq k \cdot \mathbb{E}[X]) \leq \frac{1}{k}
$$

Incredibly simplistic - only requires that the random variable is non-negative and only needs you to know expectation. You don't need to know anything else about the distribution of X.

Markov's Inequality - Proof I

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{x} x \cdot P(X=x) \\
& =\sum_{x \geq t}^{x} x \cdot P(X=x)+\sum_{x<t} x \cdot P(X=x) \\
& \geq \sum_{x \geq t} x \cdot P(X=x) \\
& \geq \sum_{x \geq t}^{\bar{p}} t \cdot P(X=x)=t \cdot P(X \geq t) \text { dcfóflows by rearranging terms }
\end{aligned}
$$

Markov's Inequality - Proof II

Theorem. Let X be a (continuous) random variable taking only non-negative values. Then, for any $t>0$,

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} x \cdot f_{X}(x) \mathrm{d} x \\
& =\int_{t}^{\infty} x \cdot f_{X}(x) \mathrm{d} x+\int_{0}^{t} x \cdot f_{X}(x) \mathrm{d} x \\
& \geq \int_{t}^{\infty} x \cdot f_{X}(x) \mathrm{d} x \\
& \geq \int_{t}^{\infty} t \cdot f_{X}(x) \mathrm{d} x=t \cdot \int_{t}^{\infty} f_{X}(x) \mathrm{d} x=t \cdot P(X \geq t)
\end{aligned}
$$

$$
\text { so } P(X \geq t) \leq \mathbb{E}[X] / t \text { as before }
$$

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p}
$$

" X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p ?

What is the probability that $X \geq 2 \mathbb{E}[X]=2 / p$?
Markov's inequality: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Can we do better?

Suppose that the average number of ads you will see on a website is 25 . Give an upper bound on the probability of seeing a website with 75 or more ads.

Poll: pollev.com/paulbeame028
a. $0 \leq p<0.25$
b. $0.25 \leq p<0.5$
c. $0.5 \leq p<0.75$
d. $0.75 \leq p$
e. Unable to compute

Tu splat range does the Markov Drequal Pts. Marlon Rrequal bound tie
P Pr
Actual bound:
adJ

Suppose that the average number of ads you will see on a website is 25 . Give an upper bound on the probability of seeing a website with 20 or more ads.

Poll: pollev.com/paulbeameo28
a. $0 \leq p<0.25$
b. $0.25 \leq p<0.5$
c. $0.5 \leq p<0.75$
d. $0.75 \leq p$

Ce. Unable to compute

Actinal hour:

Brain Break

Agenda

- Covariance
- Markov's Inequality
- Chebyshev’s Inequality

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any $t>0$,

$$
P(\underbrace{|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}} .}_{2}
$$

Proof: Define $Z=X-\mathbb{E}[X]$
Definition of Variance

$$
\begin{aligned}
& P(|Z| \geq t)=P\left(Z^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[Z^{2}\right]}{t^{2}}=\frac{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}} \\
& |Z| \geq t \operatorname{iff} Z^{2} \geq t^{2} \quad \quad \text { Markov's inequality }\left(Z^{2} \geq 0\right)
\end{aligned}
$$

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
\left.P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}\right]
$$

What is the probability that $X \geq 2 \mathbb{E}(X)=2 / p$.
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$

11
$\begin{aligned} & \text { Chebyshev: } P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]|\geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=1-p \\ & \text { Better if } p>1 /{ }^{2} \text { © }\end{aligned}$

Example

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

Poll: pollev.com/paulbeame028
a. $0 \leq p<0.25$
b. $0.25 \leq p<0.5$
$\frac{\text { e. } 0.5 \leq p<0.75}{\text { d. } 0.75 \leq p}$
e. Unable to compute

Chebyshev's Inequality - Repeated Experiments

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$X=$ \# of flips until n times "heads"
$X_{i}=\#$ of flips between $(i-1)$-st and i-th "heads"

$$
X=\sum_{i=1}^{n} X_{i}
$$

Note: X_{1}, \ldots, X_{n} are independent and geometric with parameter p
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}$

Chebyshev's Inequality - Coin Flips

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}$
What is the probability that $X \geq 2 \mathbb{E}[X]=2 n / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}\left[X \mathbb{Z}^{2}\right.}=\frac{1-p}{n}$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

- Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

