
CSE 312

Foundations of Computing II
Lecture 20: Tail Bounds
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Review Joint PMFs and Joint Range

2

Definition. Let 𝑋 and 𝑌 be discrete random variables. The Joint PMF  
of 𝑋 and 𝑌 is

𝑝!,#(𝑎, 𝑏) = 𝑃(𝑋 = 𝑎, 𝑌 = 𝑏)

Definition. The joint range of 𝑝!,# is

Ω!,# = 𝑐, 𝑑 ∶ 𝑝!,# 𝑐, 𝑑 > 0 ⊆ Ω!×Ω#

Note that

!
!,# ∈%!,#

𝑝&,' 𝑠, 𝑡 = 1



Review Continuous distributions on ℝ×ℝ
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Definition. The joint probability density function (PDF) of continuous 
random variables 𝑋 and 𝑌 is a function 𝑓!,# defined on ℝ×ℝ such that 
• 𝑓!,# 𝑥, 𝑦 ≥ 0 for all 𝑥, 𝑦 ∈ ℝ

• ∫$%
% ∫$%

% 𝑓!,# 𝑥, 𝑦 d𝑥 d𝑦 = 1

for 𝐴 ⊆ ℝ×ℝ the probability that 𝑋, 𝑌 ∈ 𝐴 is ∬& 𝑓!,# 𝑥, 𝑦 d𝑥d𝑦
The  (marginal) PDFs 𝑓! and 𝑓# are given by

– 𝑓! 𝑥 = ∫$%
% 𝑓!,# 𝑥, 𝑦 d𝑦

– 𝑓# 𝑦 = ∫$%
% 𝑓!,# 𝑥, 𝑦 d𝑥



Review Law of Total Expectation
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴', … , 𝐴( partition the sample space. Then,

𝔼[𝑋] =B
)*'

(

𝔼 𝑋 𝐴) ⋅ 𝑃(𝐴))

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝔼[𝑋] = B
+ ∈-!

𝔼 𝑋 𝑌 = 𝑦 ⋅ 𝑃(𝑌 = 𝑦)



Agenda

• Covariance
• Markov’s Inequality
• Chebyshev’s Inequality
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Covariance:  How correlated are 𝑋 and 𝑌? 

Recall that if 𝑋 and 𝑌 are independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 ⋅ 𝔼[𝑌]

Definition:  The covariance of random variables 𝑋 and 𝑌,
Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌]

Unlike variance, covariance can be positive or negative.  It has 
has value 0 if the random variables are independent.
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Two Covariance examples:
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Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌]

Suppose 𝑋 ∼ Bernoulli(𝑝)

If random variable 𝑌 = 𝑋 then
Cov 𝑋, 𝑌 = 𝔼 𝑋. − 𝔼 𝑋 . = Var 𝑋 = 𝑝(1 − 𝑝)

If random variable 𝑍 = −𝑋 then
Cov 𝑋, 𝑍 = 𝔼 𝑋𝑍 − 𝔼 𝑋 ⋅ 𝔼 𝑍

= 𝔼 −𝑋. − 𝔼 𝑋 ⋅ 𝔼 −𝑋
= −𝔼 𝑋. + 𝔼 𝑋 . = −Var 𝑋 = −𝑝(1 − 𝑝)



Agenda

• Covariance
• Markov’s Inequality
• Chebyshev’s Inequality
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Tail Bounds (Idea)

Bounding the probability that a random variable is far from its 
mean. Usually statements of the form:

𝑃 𝑋 ≥ 𝑎 ≤ 𝑏
𝑃 |𝑋 − 𝔼 𝑋 | ≥ 𝑎 ≤ 𝑏

Useful tool when
• An approximation that is easy to compute is sufficient
• The process is too complex to analyze exactly
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Markov’s Inequality 
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Theorem. Let 𝑋 be a random variable taking only non-negative values. 
Then, for any 𝑡 > 0,

𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[!]
2

. 

(Alternative form)  For any 𝑘 ≥ 1 ,
𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤ '

3

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of 𝑋.



Markov’s Inequality – Proof I  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

𝔼[𝑋] =D
4

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

=D
452

𝑥 ⋅ 𝑃(𝑋 = 𝑥) +D
462

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

≥D
452

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

≥D
452

𝑡 ⋅ 𝑃(𝑋 = 𝑥) = 𝑡 ⋅ 𝑃(𝑋 ≥ 𝑡)

≥ 0 because 𝑥 ≥ 0
whenever 𝑃 𝑋 = 𝑥 ≥ 0
(𝑋 takes only non-negative 
values)  

Follows by re-arranging terms 
… 



Markov’s Inequality – Proof II  
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Theorem. Let 𝑋 be a (continuous) random variable 
taking only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

𝔼[𝑋] = F
7

%
𝑥 ⋅ 𝑓! 𝑥 d𝑥

= F
2

%
𝑥 ⋅ 𝑓! 𝑥 d𝑥 + F

7

2
𝑥 ⋅ 𝑓! 𝑥 d𝑥

≥ F
2

%
𝑥 ⋅ 𝑓! 𝑥 d𝑥

≥ F
2

%
𝑡 ⋅ 𝑓! 𝑥 d𝑥 = 𝑡 ⋅ F

2

%
𝑓! 𝑥 d𝑥 = 𝑡 ⋅ 𝑃(𝑋 ≥ 𝑡)

so  𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[𝑋]/𝑡 as before



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝
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𝑃 𝑋 = 𝑖 = 1 − 𝑝 )$'𝑝 𝔼[𝑋] =
1
𝑝

“𝑋 is the number of times Alice needs to flip a biased coin until she sees heads, if 
heads occurs with probability 𝑝?

What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2/𝑝? 

Markov’s inequality: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ '
. Can we do better?



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 75 or more ads. 
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Poll:  pollev.com/stefanotessaro617
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable to compute

𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤
1
𝑘



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 20 or more ads. 
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Poll:  pollev.com/stefanotessaro617
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable to compute

𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤
1
𝑘



Brain Break



Agenda

• Covariance
• Markov’s Inequality
• Chebyshev’s Inequality
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Chebyshev’s Inequality 
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Theorem. Let 𝑋 be a random variable. Then, for any 𝑡 > 0,

𝑃 |𝑋 − 𝔼[𝑋]| ≥ 𝑡 ≤ 89: !
2"

. 

Proof: Define 𝑍 = 𝑋 − 𝔼[𝑋]

𝑃 |𝑍| ≥ 𝑡 = 𝑃 𝑍. ≥ 𝑡. ≤
𝔼[𝑍.]
𝑡.

=
𝔼 𝑋 − 𝔼 𝑋 .

𝑡.
=
Var 𝑋
𝑡.

Markov’s inequality (𝑍4 ≥ 0)

Definition of Variance

|𝑍| ≥ 𝑡 iff 𝑍4 ≥ 𝑡4



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝
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𝑃 𝑋 = 𝑖 = 1 − 𝑝 )$'𝑝 𝔼[𝑋] =
1
𝑝

What is the probability that 𝑋 ≥ 2𝔼 𝑋 = 2/𝑝? 

Markov: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ '
.

Var 𝑋 =
1 − 𝑝
𝑝.

Chebyshev: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ 𝑃 𝑋 − 𝔼[𝑋] ≥ 𝔼[𝑋] ≤ 89: !
𝔼 ! " = 1 − 𝑝

Better if 𝑝 > 1/2 J



Example

Suppose that the average number of ads you will see on a 
website is 25 and the standard deviation of the number of ads 
is 4. Give an upper bound on the probability of seeing a 
website with 30 or more ads. 
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Poll:  pollev.com/stefanotessaro617
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable to compute

𝑃 |𝑋 − 𝔼[𝑋]| ≥ 𝑡 ≤ &'( #
%!

. 



Chebyshev’s Inequality – Repeated Experiments
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“How many times does Alice need to flip a biased coin until she sees heads 𝑛 times, if 
heads occurs with probability 𝑝?

𝑋 = # of flips until 𝑛 times “heads”

𝑋) = # of flips between (𝑖 − 1)-st and 𝑖-th “heads”
𝑋 =D

)*'

(

𝑋)

Note: 𝑋', … , 𝑋( are independent and geometric with parameter 𝑝

𝔼 𝑋 = 𝔼 D
)*'

(

𝑋) =D
)*'

(

𝔼[𝑋)] =
𝑛
𝑝 Var 𝑋 =D

)*'

(

Var(𝑋)) =
𝑛 1 − 𝑝

𝑝.



“How many times does Alice need to flip a biased coin until she sees heads 𝑛 times, if 
heads occurs with probability 𝑝?

Chebyshev’s Inequality – Coin Flips
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What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2𝑛/𝑝? 

Markov: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ '
.

Chebyshev: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ 𝑃 𝑋 − 𝔼[𝑋] ≥ 𝔼[𝑋] ≤ 89: !
𝔼 ! " =

'$;
(

Goes to zero as 𝑛 → ∞ J

𝔼 𝑋 = 𝔼 D
)*'

(

𝑋) =D
)*'

(

𝔼[𝑋)] =
𝑛
𝑝

Var 𝑋 =D
)*'

(

Var(𝑋)) =
𝑛 1 − 𝑝

𝑝.



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.
– Very often loose upper-bounds are okay when designing for the 

worst case

Generally (but not always) making more assumptions about 
your random variable leads to a more accurate upper-bound.
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