CSE 312 Foundations of Computing II

Lecture 20: Tail Bounds

Review Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega_{X,Y} = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$

Note that

$$\sum_{(s,t)\in\Omega_{X,Y}} p_{X,Y}(s,t) = 1$$

Review Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables *X* and *Y* is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X,Y}(x,y) \ge 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_A f_{X,Y}(x, y) \, dx \, dy$ The **(marginal) PDFs** f_X and f_Y are given by $-f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$ $-f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx$

ő

Review Law of Total Expectation

Law of Total Expectation (event version). Let *X* be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let *X* be a random variable and *Y* be a discrete random variable. Then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$$

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Covariance: How correlated are *X* and *Y*?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The **covariance** of random variables *X* and *Y*, $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

Two Covariance examples:

Suppose *X* ~ Bernoulli(*p*)

If random variable Y = X then $Cov(X,Y) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = Var(X) = p(1-p)$

If random variable
$$Z = -X$$
 then
 $Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]$
 $= \mathbb{E}[-X^2] - \mathbb{E}[X] \cdot \mathbb{E}[-X]$
 $= -\mathbb{E}[X^2] + \mathbb{E}[X]^2 = -Var(X) = -p(1-p)$

 $\operatorname{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

 $P(X \ge a) \le b$ $P(|X - \mathbb{E}[X]| \ge a) \le b$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let *X* be a random variable taking only non-negative values. Then, for any t > 0,

 $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

(Alternative form) For any $k \ge 1$, $P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of X.

Markov's Inequality – Proof I

 $x \ge t$

Theorem. Let *X* be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

$$\mathbb{E}[X] = \sum_{x} x \cdot P(X = x)$$

= $\sum_{x \ge t} x \cdot P(X = x) + \sum_{x < t} x \cdot P(X = x)$
 $\ge \sum_{x \ge t} x \cdot P(X = x)$
 $\ge \sum_{x \ge t} t \cdot P(X = x) = t \cdot P(X \ge t)$

 ≥ 0 because $x \geq 0$ whenever $P(X = x) \geq 0$ (X takes only non-negative values)

Follows by re-arranging terms

. . .

Markov's Inequality – Proof II

<u>~</u>00

Theorem. Let *X* be a (continuous) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

$$\mathbb{E}[X] = \int_0^\infty x \cdot f_X(x) \, \mathrm{d}x$$

= $\int_t^\infty x \cdot f_X(x) \, \mathrm{d}x + \int_0^t x \cdot f_X(x) \, \mathrm{d}x$
$$\geq \int_t^\infty x \cdot f_X(x) \, \mathrm{d}x$$

$$\geq \int_t^\infty t \cdot f_X(x) \, \mathrm{d}x = t \cdot \int_t^\infty f_X(x) \, \mathrm{d}x = t \cdot P(X \ge t)$$

so $P(X \ge t) \le \mathbb{E}[X]/t$ as before

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$P(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}[X] = \frac{1}{p}$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$? Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Can we do better?

Example

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 75 or more ads.

```
      Poll: pollev.com/stefanotessaro617

      a. 0 \le p < 0.25

      b. 0.25 \le p < 0.5

      c. 0.5 \le p < 0.75

      d. 0.75 \le p

      e. Unable to compute
```


Example

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.

 Poll: pollev.com/stefanotessaro617

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

 e. Unable to compute

Brain Break

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Chebyshev's Inequality

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$P(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$

What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

<u>Markov:</u> $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

<u>Chebyshev:</u> $P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$

Better if p > 1/2 \odot

Example

 $P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

 Poll: pollev.com/stefanotessaro617

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

 e. Unable to compute

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

X = # of flips until *n* times "heads" $X_i = #$ of flips between (i - 1)-st and *i*-th "heads"

$$X = \sum_{i=1}^{n} X_i$$

Note: X_1, \ldots, X_n are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?

<u>Markov:</u> $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

<u>Chebyshev:</u> $P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = \frac{1-p}{n}$ Goes to zero as $n \to \infty$ ③

22

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.