SSE 312
Foundations of Computing II
Lecture 21: Chernoff Bound \& Union Bound
Reminder. I have office hour night after chaff -leda

Review Tail Bounds

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

$$
\begin{gathered}
P(X \geq a) \leq b \\
\text { or } \\
P(|X-\mathbb{E}[X]| \geq a) \leq b
\end{gathered}
$$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

Theorem (Chebyshev's Inequality). Let X be a random variable. Then, for any $t>0$,

$$
P\left(\left\lvert\, X-\frac{M}{\mathbb{E}[X] \mid \geq t) \leq \frac{\delta_{5}}{\operatorname{Var}(X)^{t^{2}}} \sigma^{2}}\right.\right.
$$

Agenda

- Chernoff Bound
- Example: Server Load, and the union bound

Chebyshev \＆Binomial

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}} .
$$

$$
\begin{gathered}
\mu \in \mathbb{E} \mid X ?^{\mathbb{z}} \\
\text { Reformulated: } P(|X-\stackrel{\rightharpoonup}{\mu}| \geq \delta \mu) \leq \frac{\sigma^{2}}{\delta^{2} \mu^{2}} \text { where } \mu=\mathbb{E}[X] \text { and } \sigma^{2}=\operatorname{Var}(X)
\end{gathered}
$$

If $X \sim \operatorname{Bin}(n, p)$ ，then $\mu=n p$ and $\sigma^{2}=\frac{n p(1-p)}{\sigma^{2}}$
$\delta_{\mu}=0.05 n$

$$
P(|X-\mu| \geq \delta \mu) \leq \frac{n p(1-p \mid)}{\delta^{2} \frac{n^{2} p^{2}}{\mu^{2}}}=\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}
$$

E．g．，$\delta=0.1, p=0.5: \quad n=$ 200：$P(|X-\mu| \geq \delta \mu) \leq 0.5$
7．$-55 n n=800: P(|X-\mu| \geq \delta \mu) \leq 0.125$
少告い

Binomial with parameter $n=200, p=0.5$

Chernoff-Hoeffding Bound

Theorem. Let $X=X_{1}+\cdots+X_{n}$ be a sum of independent RVs, each taking values in $[0,1]$, such that $\mathbb{E}[X]=\mu$. Then, for every $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}}
$$

Example: If $X \sim \operatorname{Bin}(n, p)$, then $X=X_{1}+\cdots+X_{n}$ is a sum of independent
$\{0,1\}$-Bernoulli variables, and $\mu=n p$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Chernoff-Hoeffding Bound - Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim \operatorname{Bin}(n, p)$. Let $\mu=n p=$ $\mathbb{E}[X]$. Then, for any $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} n p}{4}} .
$$

Example:

$$
\begin{aligned}
& p=0.5 \\
& \delta=0.1
\end{aligned}
$$

	Chebyshev	
Chernoff		
n	$\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-\frac{\delta^{2} n p}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}

Chernoff Bound - Example

$$
\mathbb{P}(|X-\mu| \geq \delta \cdot \mu) \leq e^{\frac{\delta^{2} n P}{4}} .
$$

Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?

Chernoff vs Chebyshev - Summary

Why is the Chernoff Bound True?

Proof strategy (upper tail): For any $t>0$:

- $P(X \geq(1+\delta) \cdot \mu)=P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right)$
- Then, apply Markov + independence:

$$
P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right) \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}}=\frac{\mathbb{E}\left[e^{t X_{1}}\right] \cdots \mathbb{E}\left[e^{t X_{n}}\right]}{e^{t(1+\delta) \mu}}
$$

- Find t minimizing the right-hand-side.

Brain Break

Agenda

- Chernoff Bound
- Example: Server Load, and the union bound

Application - Distributed Load Balancing

We have k processors, and $n \gg k$ jobs.
We want to distribute jobs evenly across processors.
Strategy: Each job assigned to a randomly chosen processor!
$X_{i}=$ load of processor $i \quad X_{i} \sim \operatorname{Binomial}(n, 1 / k) \quad \mathbb{E}\left[X_{i}\right]=n / k$
$X=\max \left\{X_{1}, \ldots, X_{k}\right\}=$ max load of a processor

Question: How close is X to n / k ?

Distributed Load Balancing

Claim. (Load of single server) If $n>16 k \ln k$, then

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4} .
$$

Example:

- $n=10^{6} \gg k=1000$
- $\frac{n}{k}+4 \sqrt{n \ln k / k} \approx 1332$
- "The probability that server i processes more than 1332 jobs is at most 1-over-one-trillion!"

Distributed Load Balancing

Claim. (Load of single server) If $n>16 k \ln k$, then

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right)=P\left(X_{i}>\frac{\mu}{k}\left(1+\left(4 \sqrt{\frac{\alpha}{\frac{k}{\ln k}}}\right)\right) \leq 1 / k^{4} .\right.
$$

Proof. Set $\mu=\mathbb{E}\left[X_{i}\right]=\frac{n}{k}$ and $\delta=4 \sqrt{\frac{k}{n} \ln k}<4 \sqrt{\frac{k}{16 k \ln k} \ln k}=1$

$$
\begin{aligned}
P\left(X_{i}>\mu\left(1+4 \sqrt{\frac{k \ln k}{n}}\right)\right. & =P\left(X_{i}>\mu(1+\delta)\right) \\
& \leq P\left(\left|X_{i}-\mu\right|>\mu \delta\right) \\
& \leq e^{2}=4^{2} \cdot \frac{k \ln k}{n} \\
\operatorname{so~} \delta^{2} \mu=4^{2} \ln k &
\end{aligned}
$$

What about the maximum load?

Claim. (Load of single server) If $n>16 k \ln k$, then

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4} .
$$

What about $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$?
Note: X_{1}, \ldots, X_{k} are not (mutually) independent!
In particular: $X_{1}+\cdots+X_{k}=n \quad$ When non-trivial outcome of one $R V$ can be derived from other RVs, they are non-independent.

Detour - Union Bound

Theorem (Union Bound). Let A_{1}, \ldots, A_{n} be arbitrary events. Then,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

Intuition (3 evts.):

Detour - Union Bound - Example

Suppose we have $N=200$ computers, where each one fails with probability 0.001 .
What is the probability that at least one server fails?
Let A_{i} be the event that server i fails.
Then event that at least one server fails is $\cup_{i=1}^{N} A_{i}$

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right) \leq \sum_{i=1}^{N} P\left(A_{i}\right)=0.001 N=0.2
$$

What about the maximum load?

Claim. (Load of single server) If $n>16 k \ln k$, then

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4}
$$

What about $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$?

$$
\begin{aligned}
P\left(X>\frac{n}{k}+4 \sqrt{n \ln k / k}\right) & =P\left(\left\{X_{1}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right\} \cup \cdots \cup\left\{X_{k}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right\}\right) \\
\text { Union bound } \longrightarrow & \leq P\left(X_{1}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right)+\cdots+P\left(X_{k}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right) \\
& \leq \frac{1}{k^{4}}+\cdots+\frac{1}{k^{4}}=k \times \frac{1}{k^{4}}=\frac{1}{k^{3}}
\end{aligned}
$$

What about the maximum load?

Claim. (Load of single server) If $n>16 k \ln k$, then

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4} .
$$

Claim. (Max load) Let $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$. If $n>16 k \ln k$, then

$$
P\left(X>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{3} .
$$

Example:

- $n=10^{6} \gg k=1000$
- $\frac{n}{k}+4 \sqrt{n \ln k / k} \approx 1332$
- "The probability that some server processes more than 1332 jobs is at most 1-over-one-billion!"

