## CSE 312 Foundations of Computing II

## Lecture 21: Chernoff Bound & Union Bound

Rounder, I have afford the hour right after class fedag

#### **Review Tail Bounds**

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

 $P(X \ge a) \le b$ 

or

 $P(|X - \mathbb{E}[X]| \ge a) \le b$ 

#### **Review Markov's and Chebyshev's Inequalities**

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any t > 0,

 $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$ 

**Theorem (Chebyshev's Inequality).** Let *X* be a random variable. Then, for any t > 0,  $P(|X - \mathbb{E}[X]| \ge t) \le \underbrace{\operatorname{Var}(X)}_{t^2}$ 

#### Agenda

- Chernoff Bound 🗲
- Example: Server Load, and the union bound

# **Chebyshev & Binomial** $\mathcal{W} = \{X = \mathbb{E}[X] | \ge t\} \le \frac{\operatorname{Var}(X)}{t^2}$ Reformulated: $P(|X - \mu| \ge \delta\mu) \le \frac{\sigma^2}{\delta^2\mu^2}$ where $\mu = \mathbb{E}[X]$ and $\sigma^2 = \operatorname{Var}(X)$

If 
$$X \sim Bin(n, p)$$
, then  $\mu = np$  and  $\sigma^2 = np(1-p)$   
 $P(|X - \mu| \ge \delta\mu) \le \frac{np(1-p)}{\delta^2 n^2 p^2} = \frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$   
 $\sum_{k=0,0}^{\infty} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty}$ 





#### **Chernoff-Hoeffding Bound**

**Theorem.** Let  $X = X_1 + \dots + X_n$  be a sum of independent RVs, each taking values in [0,1], such that  $\mathbb{E}[X] = \mu$ . Then, for every  $\delta \in [0,1]$ ,  $P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}$ .

Herman Chernoff, Herman Rubin, Wassily Hoeffding

**Example:** If  $X \sim Bin(n, p)$ , then  $X = X_1 + \dots + X_n$  is a sum of independent {0,1}-Bernoulli variables, and  $\mu = np$ 

**Note:** More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

#### **Chernoff-Hoeffding Bound – Binomial Distribution**

**Theorem. (CH bound, binomial case)** Let  $X \sim Bin(n, p)$ . Let  $\mu = np = \mathbb{E}[X]$ . Then, for any  $\delta \in [0,1]$ ,

$$P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}$$

**Example:** p = 0.5  $\delta = 0.1$ 

#### Chebyshev Chernoff

| n     | $\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$ | $e^{-\frac{\delta^2 np}{4}}$ |
|-------|------------------------------------------------------------|------------------------------|
| 800   | 0.125                                                      | 0.3679                       |
| 2600  | 0.03846                                                    | 0.03877                      |
| 8000  | 0.0125                                                     | 0.00005                      |
| 80000 | 0.00125                                                    | $3.72 \times 10^{-44}$       |

#### **Chernoff Bound – Example**



Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least  $0.75 \times n$  times?

M = Mp = 0.5n  $7, \delta M away for M$   $7, \delta M 0.25n$   $\delta M = 0.25n$   $\delta M = 0.25n$   $\delta M = 0.25n$ 





#### Why is the Chernoff Bound True?

Proof strategy (upper tail): For any t > 0:

- $P(X \ge (1 + \delta) \cdot \mu) = P(e^{tX} \ge e^{t(1 + \delta) \cdot \mu})$
- Then, apply Markov + independence:  $P(e^{tX} \ge e^{t(1+\delta)\cdot\mu}) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} = \frac{\mathbb{E}[e^{tX_1}]\cdots\mathbb{E}[e^{tX_n}]}{e^{t(1+\delta)\mu}}$
- Find *t* minimizing the right-hand-side.

#### **Brain Break**



### Agenda

- Chernoff Bound
- Example: Server Load, and the union bound <

#### **Application – Distributed Load Balancing**

We have k processors, and  $n \gg k$  jobs. We want to distribute jobs evenly across processors.

**Strategy:** Each job assigned to a randomly chosen processor!

- $X_i$  = load of processor i  $X_i \sim \text{Binomial}(n, 1/k)$   $\mathbb{E}[X_i] = n/k$
- $X = \max{X_1, \dots, X_k} = \max$  load of a processor

**Question:** How close is *X* to n/k?

### **Distributed Load Balancing**

**Claim. (Load of single server)** If  $n > 16k \ln k$ , then  $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^4.$ 

#### Example:

- $n = 10^6 \gg k = 1000$
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- "The probability that server *i* processes more than 1332 jobs is at most 1-over-one-trillion!"

#### **Distributed Load Balancing**

Claim. (Load of single server) If  $n > 16k \ln k$ , then /  $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) = P\left(X_i > \frac{n}{k}\left(1 + 4\sqrt{\frac{k\ln k}{n}}\right)\right) \le 1/k^4.$ **Proof.** Set  $\mu = \mathbb{E}[X_i] = \frac{n}{k}$  and  $\delta = 4\sqrt{\frac{k}{n}} \ln k < 4\sqrt{\frac{k}{16k \ln k}} \ln k = 1$  $n > 16k \ln k$  $P\left(X_i > \mu\left(1 + 4\sqrt{\frac{k\ln k}{n}}\right)\right) = P\left(X_i > \mu(1+\delta)\right)$  $\leq P(|X_i - \mu| > \mu\delta)$  $\delta^2 = 4^2 \cdot \frac{k \ln k}{m}$  $\leq e^{-\frac{\delta^2 \mu}{4}} = e^{-4\ln k} \left(=\frac{1}{k^4}\right)$ so  $\delta^2 \mu = 4^2 \ln k$ 17

#### What about the maximum load?

Claim. (Load of single server) If  $n > 16k \ln k$ , then  $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^4.$ 

What about  $X = \max\{X_1, \dots, X_k\}$ ?

Note:  $X_1, \ldots, X_k$  are <u>not</u> (mutually) independent!

In particular:  $X_1 + \dots + X_k = n$  -

When non-trivial outcome of one RV can be derived from other RVs, they are non-independent.

#### **Detour – Union Bound**

#### **Detour – Union Bound - Example**

Suppose we have N = 200 computers, where each one fails with probability 0.001.

What is the probability that at least one server fails?

Let  $A_i$  be the event that server *i* fails.

Then event that at least one server fails is  $\bigcup_{i=1}^{N} A_i$ 

$$P\left(\bigcup_{i=1}^{N} A_i\right) \le \sum_{i=1}^{N} P(A_i) = 0.001N = 0.2$$

#### What about the maximum load?

**Claim. (Load of single server)** If  $n > 16k \ln k$ , then  $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^4.$ 

What about  $X = \max\{X_1, \dots, X_k\}$ ?

$$P\left(X > \frac{n}{k} + 4\sqrt{n\ln k / k}\right) = P\left(\left\{X_1 > \frac{n}{k} + 4\sqrt{n\ln k / k}\right\} \cup \dots \cup \left\{X_k > \frac{n}{k} + 4\sqrt{n\ln k / k}\right\}\right)$$
  
Union bound  
$$= P\left(X_1 > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) + \dots + P\left(X_k > \frac{n}{k} + 4\sqrt{n\ln k / k}\right)$$
$$\leq \frac{1}{k^4} + \dots + \frac{1}{k^4} = k \times \frac{1}{k^4} = \frac{1}{k^3}$$

#### What about the maximum load?

Claim. (Load of single server) If  $n > 16k \ln k$ , then  $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^4.$ 

Claim. (Max load) Let  $X = \max\{X_1, \dots, X_k\}$ . If  $n > 16k \ln k$ , then  $P\left(X > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^3.$ 

#### Example:

- $n = 10^6 \gg k = 1000$
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- "The probability that some server processes more than 1332 jobs is at most 1-over-one-billion!"