CSE 312
 Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Probability vs Statistics

Recall Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p

Polling Procedure

for $i=1, \ldots, n$:

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Report our estimate of p :

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Recall Formalizing Polls

$$
x_{1} \quad y_{h}
$$

We assume that poll answers $\underset{\underline{X_{1}}}{ }, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d. for unknown p
Goal: Estimate p
We did this by computing $(\hat{n})=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
"p hat"

Notation - Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter θ, described by a two-argument function

$$
\begin{aligned}
& P(x ; \theta)=\text { prob. of outcome } x \text { when distribution has parameter } \theta \\
& \qquad\left[\text { i.e., every } \theta \text { defines a different distribution } \sum_{x} P(x ; \theta)=1\right]
\end{aligned}
$$

Examples

- "Bernoullis": $P(\underset{\sim}{\operatorname{Bev}}(p)=p)= \begin{cases}p & x=1 \\ 1-p & \overline{x=0}\end{cases}$
- "Geometrics": $P(i ; \theta=\underline{p})=(1-p)^{i-1} p \quad$ for $i \in \mathbb{N}$

Statistics: Parameter Estimation - Workflow

$\theta=$ unknown parameter

Example: coin flip distribution with unknown $\theta=$ probability of heads

> Observation: HTTHHHTHT HTTTT HT HTTTTTHT

Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips

TTHTHTTH

$$
3 \text { heads }
$$

Given this data, what would you estimate p is?
Poll: pollev.com/paulbeameo28
a. $1 / 2$
b. $5 / 8$

$$
\begin{aligned}
& 8 \text { flips } \\
& \text { sample near }
\end{aligned}
$$

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome $H H T H H$.
You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

Say we see outcome $H H T H H$.
$\mathcal{L}($ HHTHH| $)=\underline{\theta}^{4}(1-\theta)$
Probability of observing the outcome HHTHH if $\theta=$ prob. of heads.

For a fixed outcome HHTHH , this is a function of θ.

Max Prob of seeing HHTHH

Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\begin{aligned}
& \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right) \\
& \text { ov, orathy }
\end{aligned}
$$

Maximum Likelihood Estimation (MLE). Given data x_{1}, \ldots, x_{n}, find $\hat{\theta}$ such that $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \underset{\log e}{ } \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)^{l^{\text {contrinens }}}
$$

Usually: Solve $\frac{\partial \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\partial \theta}=0$ or $\frac{\partial \ln \mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \theta\right)}{\partial \theta}=0$ [+check it's a max! $]_{-12}$

Likelihood vs. Probability

- Fixed θ : probability $\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$ that dataset x_{1}, \ldots, x_{n} is sampled by distribution with parameter θ
- A function of x_{1}, \ldots, x_{n}
- Fixed x_{1}, \ldots, x_{n} : likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ that parameter θ explains dataset x_{1}, \ldots, x_{n}.
- A function of θ

These notions are the same number if we fix both x_{1}, \ldots, x_{n} and θ, but different role/interpretation

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\text { -i.e., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=? ? ?$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we work with the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations
x_{1}, \ldots, x_{n} is

$$
\underline{\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)}=\ln \prod_{i=1}^{n} P\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln P\left(x_{i} ; \theta\right)
$$

Useful log properties

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Example - Coin Flips

$$
(\ln x)^{\prime}=\frac{1}{x}
$$

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\text { -i.e., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \ln \theta+n_{T} \ln (1-\theta)$
$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \cdot \frac{1}{\theta} n_{T} \cdot \frac{1}{1-\theta}$

So we need $n_{H} \cdot \frac{1}{\hat{\theta}}-n_{T} \cdot \frac{1}{1-\hat{\theta}}=0$

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$

3. \log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

The Continuous Case

Given n (independent) samples x_{1}, \ldots, x_{n} from (continuous) parametric model $f\left(x_{i} ; \theta\right)$ which is now a family of densities

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\begin{array}{r}
\left.\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)\right) \\
\text { Density function! (Why?) }
\end{array}
$$

Why density?

- Density \neq probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model
sran is fred
n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?
[i.e., we are given the promise that the variance is 1]

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Example - Gaussian Parameters

$$
P(x)<\theta=1
$$

$$
\begin{aligned}
& \text { Parameters } \\
& \frac{1}{5 \pi} e^{-(x)} \quad \text { Cur } \\
& 6=1
\end{aligned}
$$

Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$ but for unknown mean μ

Goal: estimate $\theta=$ mean

$$
\begin{aligned}
& \mathcal{L}\left(x_{1}, \ldots, n\right)(\theta)=\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2 \pi}} e^{-\left(x_{i}-\theta\right)^{2}}\right) \\
&=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \prod_{i=1}^{n} e^{\frac{-\left(x_{i}-\theta\right]^{2}}{2}} \\
& \text { dos, MLE is the }
\end{aligned}
$$

Next time:
In other words, MLE is the

$$
\hat{\theta}=\frac{\sum_{i}^{n} x_{i}}{n}
$$ sample mean of the data.

$$
\left.\ln e^{6} f a r \ln \left(x_{1}-x_{n}\right) \theta\right)=\quad n\left(\frac{n}{2}\right)+\sum_{i=1}^{u}\left(\frac{\left.x_{i}-\theta\right)^{2}}{\sqrt{2 \pi}}\right)^{n}
$$

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

