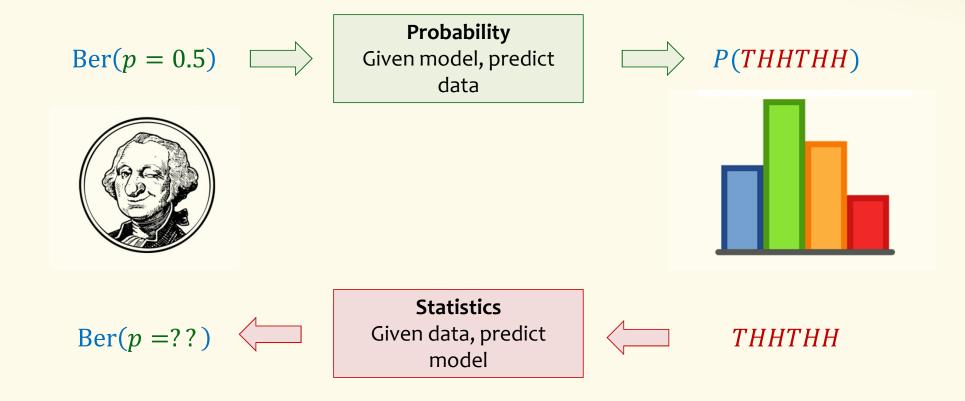
CSE 312 Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Probability vs Statistics



Recall Formalizing Polls

Population size *N*, true fraction of voting in favor *p*, sample size *n*. **Problem:** We don't know *p*

Polling Procedure

for i = 1, ..., n:

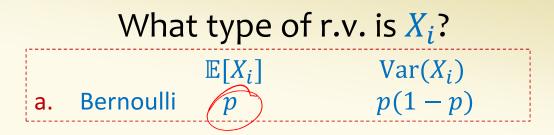
- 1. Pick uniformly random person to call (prob: 1/N)
- 2. Ask them how they will vote

$$X_i = \begin{cases} 1, \\ 0, \end{cases}$$

voting in favor otherwise

Report our estimate of *p*:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$



Recall Formalizing Polls

We assume that poll answers $X_1, \dots, X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown</u> p

Goal: Estimate p

We did this by computing
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

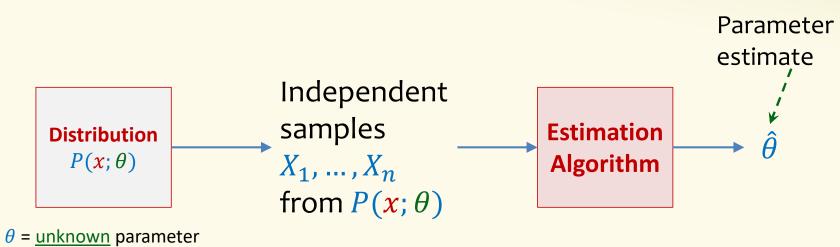
Notation – Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter θ , described by a two-argument function

 $P(\mathbf{x}; \theta) = \text{prob. of outcome } \mathbf{x}$ when distribution has parameter θ [i.e., every θ defines a different distribution $\sum_{\mathbf{x}} P(\mathbf{x}; \theta) = 1$]

Examples

- "Bernoullis": $P(x; \theta = p) = \begin{cases} p & x = 1\\ 1-p & x = 0 \end{cases}$
- "Geometrics": $P(i; \theta = p) = (1 p)^{i-1}p$ for $i \in \mathbb{N}$



Statistics: Parameter Estimation – Workflow

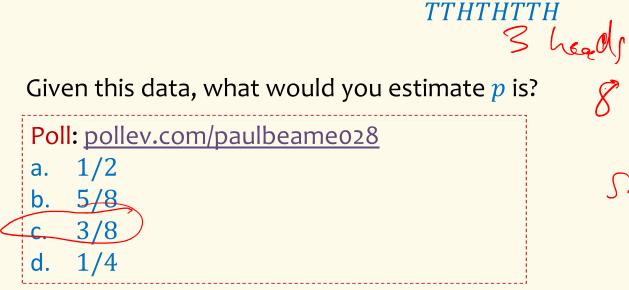
Example: coin flip distribution with unknown θ = probability of heads

Observation: *HTTHHHTHTHTHTHTHTHTTTTHT*

Goal: Estimate

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips



8 flips Sangle near

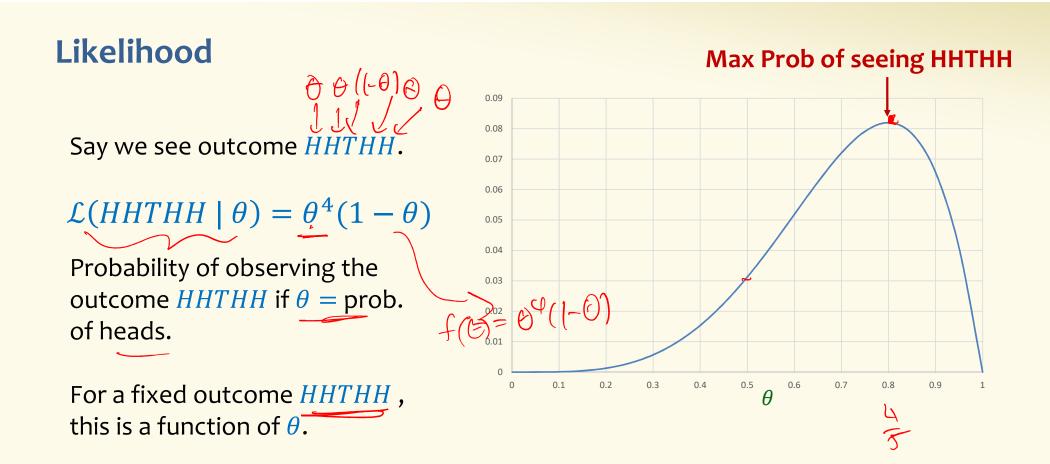
Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?



Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations x_1, \ldots, x_n is $\mathcal{L}(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^{n} P(x_i; \theta)$ $t \quad \text{where the product } i = 1$ M dependent**Maximum Likelihood Estimation (MLE).** Given data x_1, \ldots, x_n , find $\hat{\theta}$ such that $\mathcal{L}(x_1, \dots, x_n \mid \hat{\theta})$ is maximized! Continue part $\hat{\theta} = \operatorname{argmax} \mathcal{L}(x_1, \dots, x_n | \theta)$ θ (09e Usually: Solve $\frac{\partial \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0$ or $\frac{\partial \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0$ [+check it's a max!]

Likelihood vs. Probability

- Fixed θ: probability ∏ⁿ_{i=1} P(x_i; θ) that dataset x₁, ..., x_n is sampled by distribution with parameter θ
 A function of x₁, ..., x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, ..., x_n | \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> x_1, \dots, x_n and θ , but different role/interpretation

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n | \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we work with the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations x_1, \dots, x_n is $\ln \mathcal{L}(x_1, \dots, x_n | \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$

Useful log properties

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

15

Example – Coin Flips

((n x)' = 1

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_{1}, \dots, x_{n} | \theta) = \theta^{n_{H}} (1 - \theta)^{n_{T}}$$

$$\ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = n_{H} \ln \theta + n_{T} \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta}$$
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = 0$
So we need $n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta} = 0$

$$\int \frac{\partial \theta}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = 0$$

$$\int \frac{\partial \theta}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = 0$$

General Recipe

- 1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

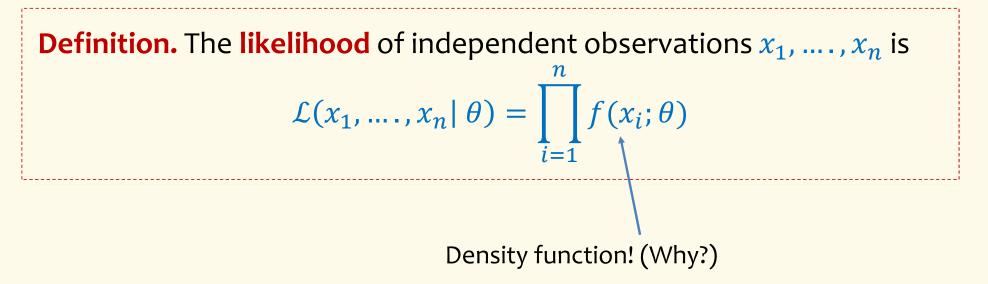
Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE 🗲

The Continuous Case

Given *n* (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of <u>densities</u>

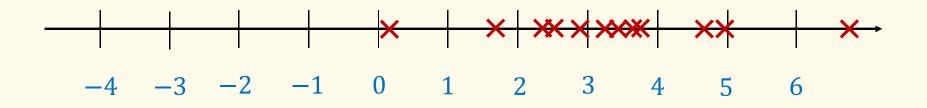


20

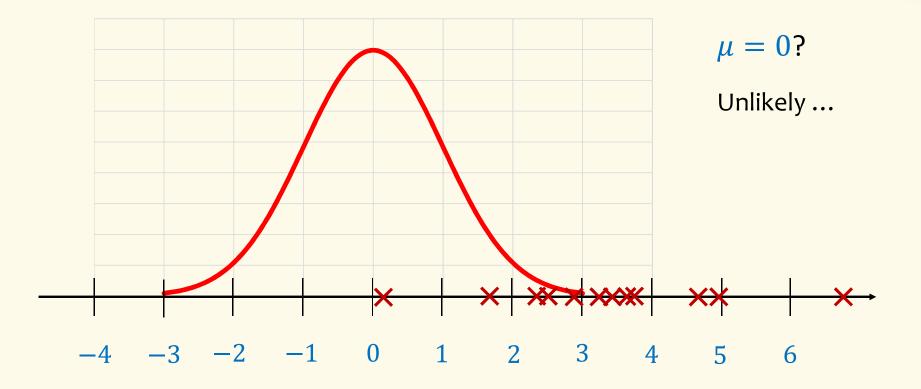
Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

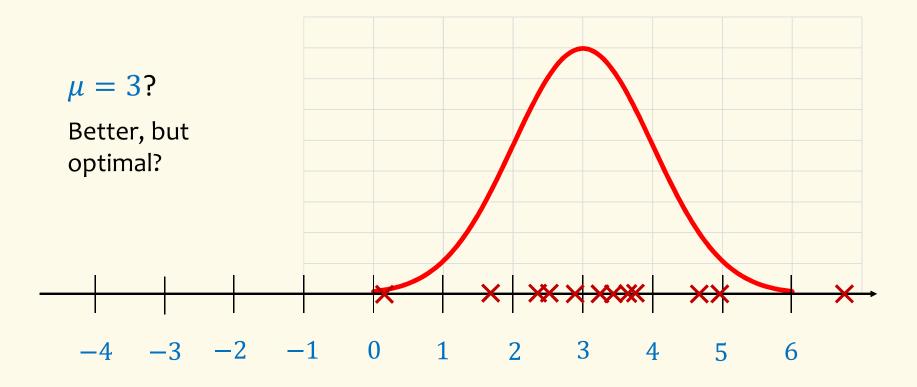
n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely</u> μ ? [i.e., we are given the <u>promise</u> that the variance is 1]

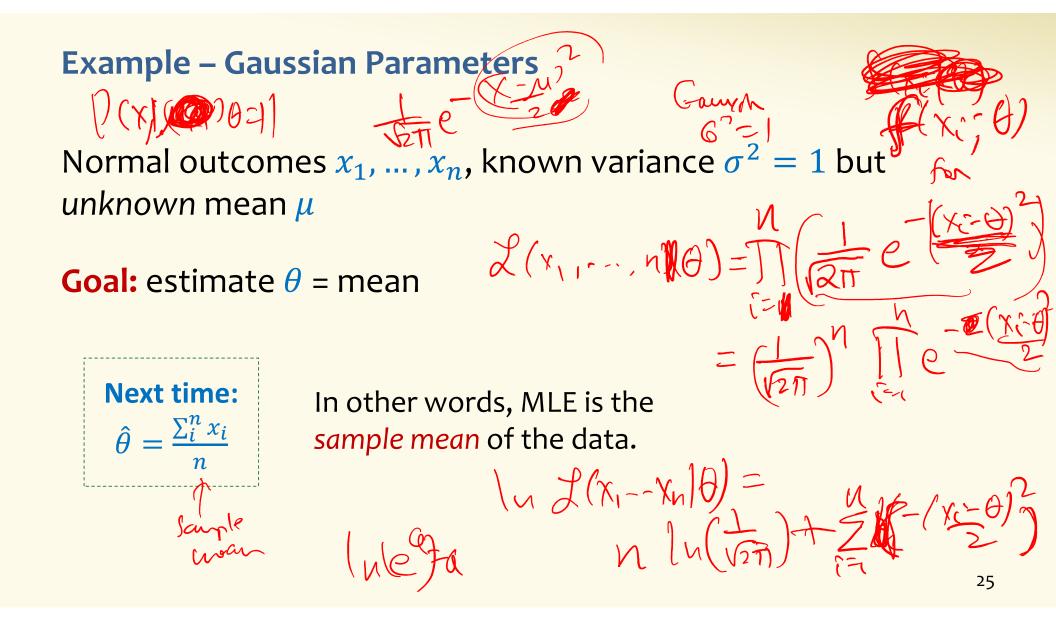


n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ ?</u>



n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ ?</u>





General Recipe

1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .

- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.