CSE 312

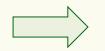
Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Probability vs Statistics



Probability

Given model, predict data

P(THHTHH)

$$Ber(p = ??)$$

Statistics

Given data, predict model

THHTHH

Recall Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p

What type of r.v. is X_i ?

 $\mathbb{E}[X_i]$ $Var(X_i)$

a. Bernoulli p p(1-p)

Polling Procedure

for
$$i = 1, ..., n$$
:

- 1. Pick uniformly random person to call (prob: 1/N)
- 2. Ask them how they will vote

$$X_i = \begin{cases} 1, \\ 0, \end{cases}$$

 $X_i = \begin{cases} 1, & \text{voting in favor} \\ 0, & \text{otherwise} \end{cases}$ otherwise

Report our estimate of p:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Recall Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for unknown p

Goal: Estimate *p*

We did this by computing $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Notation – Parametric Model (discrete case)

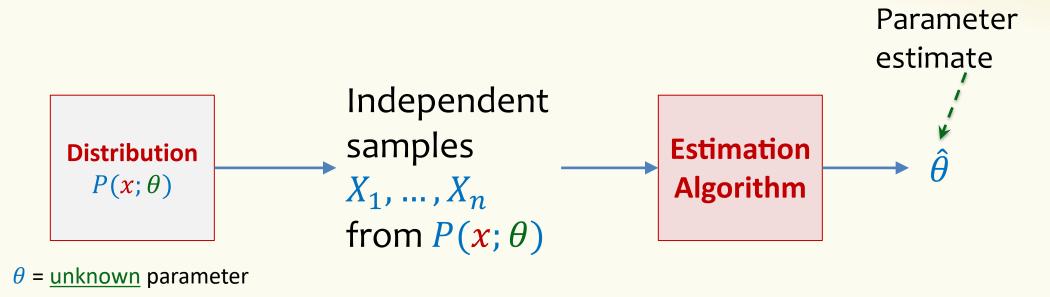
Definition. A (parametric) model is family of distributions indexed by a parameter θ , described by a two-argument function

 $P(x; \theta) = \text{prob. of outcome } x \text{ when distribution has parameter } \theta$ [i.e., every θ defines a different distribution $\sum_{x} P(x; \theta) = 1$]

Examples

- "Bernoullis": $P(x; \theta = p) = \begin{cases} p & x = 1 \\ 1 p & x = 0 \end{cases}$
- "Geometrics": $P(i; \theta = p) = (1-p)^{i-1}p$ for $i \in \mathbb{N}$

Statistics: Parameter Estimation – Workflow



Example: coin flip distribution with unknown θ = probability of heads

Observation: HTTHHHTHTHTTTTTHT

Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips

TTHTHTTH

Given this data, what would you estimate p is?

```
Poll: pollev.com/stefanotessaro617
```

- a. 1/2
- b. 5/8
- c. 3/8
- d. 1/4

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome *HHTHH*.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

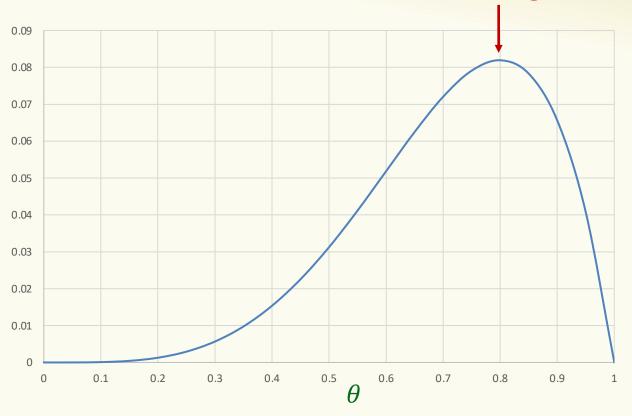
Max Prob of seeing HHTHH

Say we see outcome *HHTHH*.

$$\mathcal{L}(HHTHH \mid \theta) = \theta^4(1 - \theta)$$

Probability of observing the outcome HHTHH if $\theta = \text{prob.}$ of heads.

For a fixed outcome HHTHH, this is a function of θ .



Definition. The likelihood of independent observations x_1, \dots, x_n is

$$\mathcal{L}(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n P(x_i; \theta)$$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n , find $\hat{\theta}$ such that $\mathcal{L}(x_1, \dots, x_n \mid \hat{\theta})$ is maximized!

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(x_1, \dots, x_n | \theta)$$

Usually: Solve $\frac{\partial \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0$ or $\frac{\partial \ln \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0$ [+check it's a max!]

Likelihood vs. Probability

- Fixed θ : probability $\prod_{i=1}^n P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ
 - A function of x_1, \dots, x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, ..., x_n \mid \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> x_1 , ..., x_n and θ , but different role/interpretation

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails

- i.e.,
$$n_H + n_T = n$$

Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n | \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we work with the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations

$$x_1, \ldots, x_n$$
 is

$$\ln \mathcal{L}(x_1, ..., x_n | \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$$

Useful log properties

$$\ln(ab) = \ln(a) + \ln(b)$$
$$\ln(a/b) = \ln(a) - \ln(b)$$
$$\ln(a^b) = b \cdot \ln(a)$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob. heads.}$

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \ln \theta + n_T \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}$$

Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n | \theta) = 0$ So we need $n_H \cdot \frac{1}{\widehat{\theta}} - n_T \cdot \frac{1}{1-\widehat{\theta}} = 0$ ----- Solving gives

$$\hat{\theta} = \frac{n_H}{n}$$

General Recipe

- 1. **Input** Given n i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1,, x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

The Continuous Case

Given n (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of densities

Definition. The likelihood of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$$

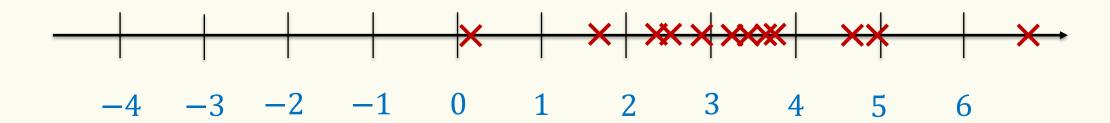
Density function! (Why?)

Why density?

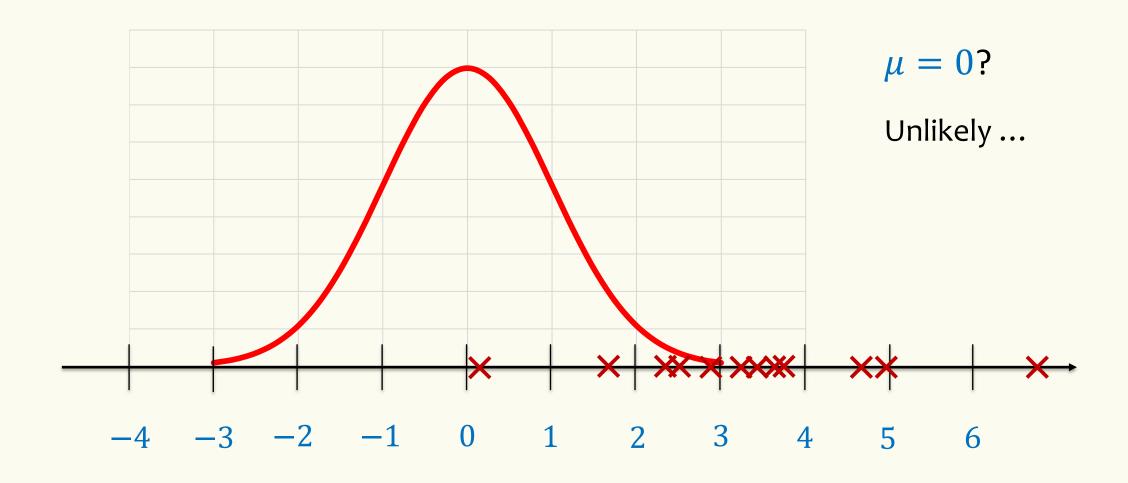
- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

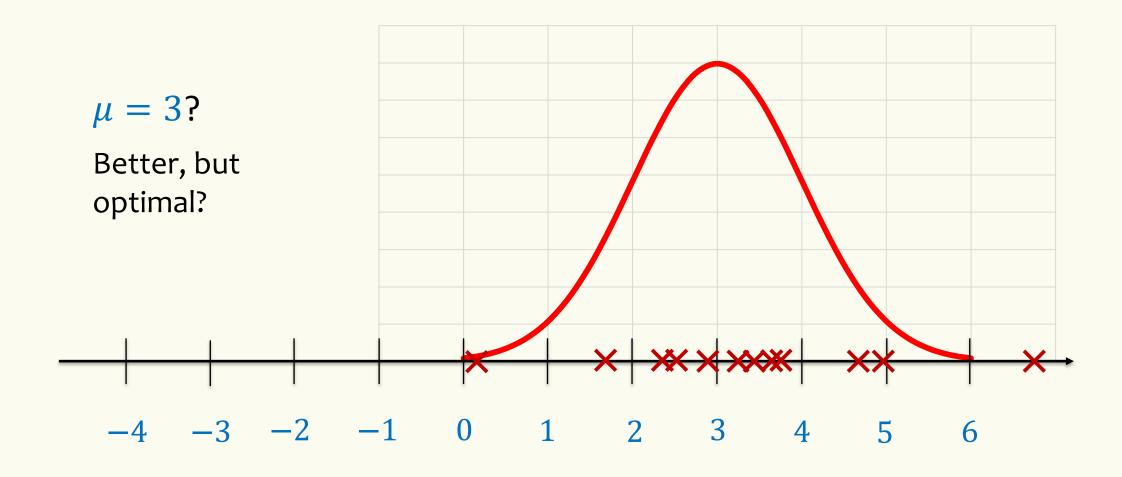
[i.e., we are given the <u>promise</u> that the variance is 1]



n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?



n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?



Example – Gaussian Parameters

Normal outcomes x_1, \dots, x_n , known variance $\sigma^2 = 1$ but unknown mean μ

Goal: estimate θ = mean

Next time:

$$\hat{\theta} = \frac{\sum_{i}^{n} x_{i}}{n}$$

In other words, MLE is the sample mean of the data.

General Recipe

- 1. Input Given n i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, ..., x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.