
CSE 312

Foundations of Computing II
Lecture 25: Markov chains and Pagerank
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Agenda

• Recap: Markov Chains
• Stationary Distributions
• Application: PageRank
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Review Markov chain example

How do we interpret this diagram?

At each time step 𝑡
– Can be in one of 3 states
• Work, Surf, Email

– If I am in some state 𝑠 at time 𝑡
• the labels of out-edges of 𝑠 give the probabilities of moving to 

each of the states at time 𝑡 + 1 (as well as staying the same)
– so labels on out-edges sum to 1
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e.g. If in Email, there is a 50-50 chance it will be in each of Work or Email at the 
next time step, but it will never be in state Surf in the next step.

This kind of 
random process 
is called a 
Markov Chain



Review Transition Probability Matrix and distribution of 𝑋 !
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[𝑞!
" , 𝑞#

" , 𝑞$
" ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞!
"%& , 𝑞#

"%& , 𝑞$
"%& ]

Vector-matrix 
multiplication

𝑴

Probability vector for state variable 𝑋 ! at time 𝑡:   𝒒 ! = [𝑞"
! , 𝑞#

! , 𝑞$
! ]

For all 𝑡 ≥ 0,  𝒒 !%& = 𝒒 ! 𝑴

𝑴 is the Transition Probability Matrix

Equivalently,   𝒒 ! = 𝒒 ' 𝑴! for all 𝑡 ≥ 0



Review Finite Markov Chains

• A set of 𝑛 states {1, 2, 3, … 𝑛}
• The state at time 𝑡 is denoted by 𝑋(!)

• A transition matrix 𝑴, dimension 𝑛× 𝑛
𝑴𝑖𝑗 = 𝑃 𝑋 !$% = 𝑗 𝑋(!) = 𝑖)

• 𝒒(!) = (𝑞%
! , 𝑞&

! , … , 𝑞'
! )where 𝑞(

! = 𝑃(𝑋(!) = 𝑖)
• Transition: LTP ⇒𝒒(!$%) = 𝒒(!)𝑴 so 𝒒(!) = 𝒒())𝑴!

• A stationary distribution 𝝅 is the solution to: 
𝝅 = 𝝅𝑴,  normalized so that Σ(∈[']𝜋𝑖 = 1
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Review Stationary Distribution of a Markov Chain
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Definition. The stationary distribution of a Markov Chain with 𝑛
states is the 𝑛-dimensional row vector 𝝅 (which must be a probability 
distribution; that is, it must be nonnegative and sum to 1) such that

𝝅𝑴 = 𝝅

Intuition: Distribution over states at next step is the same as the 
distribution over states at the current step



Review Stationary Distribution of a Markov Chain
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Intuition: 𝒒(!) is the distribution of being at each state at time 𝑡
computed by 𝒒(!) = 𝒒())𝑴!.  Often as 𝑡 gets large 𝒒 ! ≈ 𝒒 !$% .

Fundamental Theorem of Markov Chains :  For a Markov Chain that is 
aperiodic* and irreducible*, with transition probabilities 𝑴 and for any 
starting distribution 𝒒(') over the states

lim
!→+

𝒒(')𝑴! = 𝝅
where 𝝅 is the stationary distribution of 𝑴 (i.e., 𝝅𝑴 = 𝝅 )

*These concepts are way beyond us but they turn out to cover a very large class of               
Markov chains of practical importance.



Computing the Stationary Distribution
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[𝜋", 𝜋#, 𝜋,] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

= [𝜋", 𝜋#, 𝜋$]

Stationary Distribution satisfies
• 𝝅 = 𝝅𝑴, where  𝝅 = (𝜋" , 𝜋# , 𝜋$)
• 𝜋" + 𝜋# + 𝜋$ = 1

è 𝜋" = &'
-.
, 𝜋#=

&/
-.
, 𝜋$=

0
-.

How did we get this?

Solve system of equations:

0.4 ⋅ 𝜋" + 0.1 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 𝜋"
0.6 ⋅ 𝜋" + 0.6 ⋅ 𝜋# = 𝜋#

0.3 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 𝜋$
𝜋" + 𝜋# + 𝜋$ = 1



Computing the Stationary Distribution
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[𝜋", 𝜋#, 𝜋,] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

= [𝜋", 𝜋#, 𝜋$]

Solve system of equations:

0.4 ⋅ 𝜋! + 0.1 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 𝜋!

0.6 ⋅ 𝜋! + 0.6 ⋅ 𝜋# = 𝜋#
0.3 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 𝜋$

𝜋! + 𝜋# + 𝜋$ = 1

But more equations than unknowns ???

0.3 ⋅ 𝜋# = 0.5 ⋅ 𝜋$

0.6 ⋅ 𝜋! = 0.4 ⋅ 𝜋#

From ❸ we get
0.1 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 0.4 ⋅ 𝜋#

so ❶ becomes equivalent to ❷

One of the equations for 𝝅 = 𝝅𝑴 always 
depends on the others: 

❷

❸

❶



Computing the Stationary Distribution
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[𝜋", 𝜋#, 𝜋,] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

= [𝜋", 𝜋#, 𝜋$]

Solve system of equations:

0.4 ⋅ 𝜋! + 0.1 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 𝜋!

0.6 ⋅ 𝜋! + 0.6 ⋅ 𝜋# = 𝜋#
0.3 ⋅ 𝜋# + 0.5 ⋅ 𝜋$ = 𝜋$

𝜋! + 𝜋# + 𝜋$ = 1

0.3 ⋅ 𝜋# = 0.5 ⋅ 𝜋$

0.6 ⋅ 𝜋! = 0.4 ⋅ 𝜋# 𝜋! = (2/3) 𝜋#

(3/5) ⋅ 𝜋# = 𝜋$

But more equations than unknowns ???

Choose the simplest ones to work with

(2/3) 𝜋#+ 𝜋# + (3/5) ⋅ 𝜋# = 1

((10 + 15 + 9)/15) ⋅ 𝜋# = 1

𝜋# = 15/34



Another stationary distribution example
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1
2

3

1

1
1

𝑴 =
0 1 0
0 0 1
1 0 0

Poll: pollev.com/stefanotessaro617
The stationary distribution for this 
Markov Chain …
a. is [1/3,1/6,1/2]
b. is [1/2,1/2,1/2]
c. is [1/2,1/4,1/4]
d. is [1/3,1/3,1/3]
e. doesn’t exist



Another stationary distribution example
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1
2

3

1

1
1

𝑴 =
0 1 0
0 0 1
1 0 0

Poll: pollev.com/stefanotessaro617
The stationary distribution for this 
Markov Chain …
a. is [1/3,1/6,1/2]
b. is [1/2,1/2,1/2]
c. is [1/2,1/4,1/4]
d. is [1/3,1/3,1/3]
e. doesn’t exist

This is an example of a Markov Chain 
that is periodic and does not converge

If  𝑋 ' = 1 then the sequence of 
states 𝑋 ' , 𝑋 & , 𝑋 ( , … is always

1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3, …



Another Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

This is called a ”random walk” on this graph.
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1 2

3 5

4



Example: Random Walks on an Undirected Graph
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To
 1

To
 2

To
 3

To
 4

To
 5

From 1
From 2
From 3

From 5
From 4

Start by defining transition probs.

1 2

3 5

4

𝒒)
(") = 𝑃 X " = 𝑖 = 𝒒 ' 𝑴"

)

𝑴), = 𝑃 𝑋 "%& = 𝑗 | 𝑋 " = 𝑖

0
1/2
1/2
0
0

1/2
0
0
1/3
0

1/2
0
0
1/3
0

0
1/2
1/2
0
1

0
0
0
1/3
0



Example: Random Walks on an Undirected Graph
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To
 1

To
 2

To
 3

To
 4

To
 5

From 1
From 2
From 3

From 5
From 4

Start by defining transition probs.

1 2

3 5

4

𝒒)
(") = 𝑃 X " = 𝑖 = 𝒒 ' 𝑴"

)

𝑴), = 𝑃 𝑋 "%& = 𝑗 | 𝑋 " = 𝑖

0
1/2
1/2
0
0

1/2
0
0
1/3
0

1/2
0
0
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0
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1/2
0
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Example: Random Walks on an Undirected Graph
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Suppose we know that 𝑋 ' = 2.What is 𝑃 𝑋 ( = 3 ?

1 2

3 5

4



Brain Break
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Agenda

• Recap: Markov Chains
• Stationary Distributions
• PageRank
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PageRank: Some History

The year was 1997
– Bill Clinton in the White House
– Deep Blue beat world chess champion (Kasparov)

The Internet was not like it was today. Finding stuff was hard!
– In Nov 1997, only one of the top 4 search engines actually found 

itself when you searched for it
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The Problem

Search engines worked by matching words in your queries to 
documents. 

Not bad in theory, but in practice there are lots of documents 
that match a query.
– Search for ‘Bill Clinton’, top result is ‘Bill Clinton Joke of the Day’
– Susceptible to spammers and advertisers
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The Fix: Ranking Results

• Start by doing filtering to relevant documents (with decent 
textual match). 

• Then rank the results based on some measure of ‘quality’ or 
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell)
– Larry Page and Sergey Brin (Ph.D. students at Stanford)
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Both groups had the same brilliant idea 

Larry Page and Sergey Brin (Ph.D. students at Stanford)
– Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)
– MacArthur genius prize, Nevanlinna Prize and many other 

academic honors
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PageRank - Idea

Take into account the directed graph 
structure of the web.  
Use hyperlink analysis to compute what 
pages are high quality or have high 
authority.                                                                      
Trust the Internet itself define what is 
useful via its links.
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PageRank - Idea

Idea 1 : Think of each link as a citation 
“vote of quality”

Rank pages by in-degree? 
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PageRank - Idea

Idea 1 : Think of each link as a citation 
“vote of quality”

Rank pages by in-degree? 

Problems:
• Spamming
• Some linkers are not discriminating
• Not all links created equal
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PageRank - Idea

Idea 2 : Perhaps we should weight the    
links somehow and then use the   
weights of the in-links to rank pages
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Inching towards PageRank

1. Web page has high quality if it’s linked 
to by lots of high quality pages

2. A page is high quality if it links to lots 
of high quality pages

That’s a recursive definition!
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Inching towards PageRank

• If web page 𝑥 has 𝑑 outgoing links, one 
of which goes to 𝑦, this contributes 
1/𝑑 to the importance of 𝑦

• But 1/𝑑 of what? 
We want to take into account the 
importance of 𝑥 too…                                      

…so it actually contributes 1/𝑑 of the 
importance of 𝑥
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This gives the following equations

Idea: Use the transition matrix 𝑴 defined by a random walk 
on the web to compute quality of webpages. 

Namely:  Find 𝒒 such that  𝒒𝑴 = 𝒒

This is the stationary distribution for the Markov chain 
defined by a random web surfer
– Starts at some node (webpage) and randomly follows a link to 

another.
– Use stationary distribution of her surfing patterns after a long 

time as notion of quality
29

Seem familiar?



Issues with PageRank

• How to handle dangling nodes (dead ends that don’t link to 
anything) ? 

• How to handle Rank sinks – group of pages that only link to 
each other ?

Both solutions can be solved by “teleportation”
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Final PageRank Algorithm

1. Make a Markov Chain with one state for each webpage on the Internet with 
the transition probabilities 𝑴), =

&
-."/01())

.
2. Use a modified random walk. At each point in time if the surfer is at some 

webpage 𝑖:  
– If 𝑖 has outlinks:

• With probability 𝑝, take a step to one of the neighbors of 𝑖 (equally likely) 
• With probability 1 − 𝑝, “teleport” to a uniformly random page in the whole 

Internet.
– Otherwise, always “teleport”

3. Compute stationary distribution 𝝅 of this perturbed Markov chain. 
4. Define the PageRank of a webpage 𝑖 as the stationary probability 𝜋). 
5. Find all pages with decent textual match to search and then order those 

pages by PageRank!
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PageRank - Example
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It Gets More Complicated

While this basic algorithm was the defining idea that launched 
Google on their path to success, this is far from the end to 
optimizing search

Nowadays, Google and other web search engines have a LOT 
more secret sauce to rank pages, most of which they don’t 
reveal 1) for competitive advantage and 2) to avoid gaming of 
their algorithms.
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