CSE 312
 Foundations of Computing II

Lecture 28: Victory Lap, What's Next, \& Review

What you've learned ...

The essentials of probability and some statistics,
hands-on applications,

- Naïve Bayes SPAM filtering
- Bloom Filters
- MinHash for Distinct Elements
- Markov Chains and PageRank
some societal impact,
- Differential privacy
- Algorithmic fairness
and some Python...
a great headstart for CSE 446 (ML)

What's next?

- Some places to apply and extend your knowledge
- CSE 421 Algorithms - counting and more basic probability
- CSE 422 Toolkit for Modern Algorithms - probability everywhere
- CSE 426 Cryptography - randomness, reasoning about probability essential
- CSE 427 Computational Biology
- CSE 446 Machine Learning - this course + linear algebra essential
- CSE 447 Natural Language Processing
- CSE 473 Artificial Intelligence - Bayes nets, probability, etc.
- CSE 490Q Quantum Computing - the quantum world is inherently random

Agenda

- What you've learned
- What's next
- Review

Counting: Sum \& Product Rules

- Sum rule:

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is $n+m$
- Product rule:

In a sequential process, if there are
$-n_{1}$ choices for the $1^{\text {st }}$ step,

- n_{2} choices for the $2^{\text {nd }}$ step (given the first choice),.. , and
- n_{k} choices for the $k^{\text {th }}$ step (given the previous choices), then the total number of outcomes is $n_{1} \times n_{2} \times n_{3} \times \cdots \times n_{k}$

Counting: Permutations \& Combinations

Permutations. The number of orderings of n distinct objects

$$
n!=n \times(n-1) \times \cdots \times 2 \times 1
$$

Example: How many sequences in $\{1,2,3\}^{3}$ with no repeating elements?
k-Permutations. The number of orderings of only k out of n distinct objects
$P(n, k)$
$=n \times(n-1) \times \cdots \times(n-k+1)$

$$
=\frac{n!}{(n-k!)}
$$

Example: How many sequences of 5 distinct alphabet letters from $\{A, B, \ldots, Z\}$?

Combinations / Binomial Coefficient. The number of ways to select k out of n objects, where ordering of the selected k does not matter:

$$
\binom{n}{k}=\frac{P(n, k)}{k!}=\frac{n!}{k!(n-k)!}
$$

Example: How many size-5 subsets of $\{A, B, \ldots, Z\}$?
Example: How many shortest paths from Gates to Starbucks?
Example: How many solutions (x_{1}, \ldots, x_{k}) such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?

Counting: When order only partly matters

We often want to count \# of partly ordered lists:
Let $M=\#$ of ways to produce fully ordered lists
P = \# of partly ordered lists
$N=$ \# of ways to produce corresponding fully ordered list given a partly ordered list

Then $M=P \cdot N$ by the product rule. Often M and N are easy to compute:

$$
P=M / N
$$

Dividing by N "removes" part of the order.

Multinomial Coefficients

If we have k types of objects (\boldsymbol{n} total), with $\boldsymbol{n}_{\boldsymbol{1}}$ of the first type, \boldsymbol{n}_{2} of the second, \ldots, and $\boldsymbol{n}_{\boldsymbol{k}}$ of the $k^{\text {th }}$, then the number of orderings possible is

$$
\binom{n}{n_{1}, n_{2}, \cdots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Counting using binary encoding/star and bars

The number of ways to distribute n indistinguishable balls into k distinguishable bins is

$$
\binom{n+k-1}{k-1}=\binom{n+k-1}{n}
$$

E.g., \# of ways to add k non-negative integers up to n

Encode using one symbol (1 or *) for items, the other (o or |) for dividers

Counting: Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Counting: Inclusion-Exclusion

Let A, B be sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

In general, if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| & =\text { singles }- \text { doubles }+ \text { triples }- \text { quads }+\ldots \\
& =\left(\left|A_{1}\right|+\cdots+\left|A_{n}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\ldots+\left|A_{n-1} \cap A_{n}\right|\right)+\ldots
\end{aligned}
$$

Counting: Pigeonhole Principle

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: $\lceil x\rceil$ is x rounded up to the nearest integer (e.g., $\lceil 2.731\rceil=3$)
- Floor: $\lfloor x\rfloor$ is x rounded down to the nearest integer (e.g., $[2.731\rfloor=2$)

Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Single coin flip: $\Omega=\{H, T\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Examples:

- Getting at least one head in two coin flips: $E=\{H H, H T, T H\}$
- Rolling an even number on a die :

$$
E=\{2,4,6\}
$$

Discrete Probability

Definition. A (discrete) probability space is a pair (Ω, P) where:

- Ω is a set called the sample space.
- P is the probability measure, a function $P: \Omega \rightarrow \mathbb{R}$ such that:
$-P(x) \geq 0$ for all $x \in \Omega$
$-\sum_{x \in \Omega} P(x)=1$

For $A \subseteq \Omega$:

$$
P(A)=\sum_{x \in \mathrm{~A}} P(x)
$$

Random Variables (Discrete Case)

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_{X}
$\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$
Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$

Probability Mass Function (PMF) and CDF (Discrete Case)

Definitions:

For a RV $X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that $X=x$

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

$$
\sum_{x \in \Omega_{X}} p_{X}(x)=1
$$

For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$
F_{X}(x)=P(X \leq x)
$$

Probability Density Function

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{aligned}
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& \frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
\end{aligned}
$$

What $f_{X}(x)$ measures: The local rate at which probability accumulates

Cumulative Distribution Function (Continuous Case)

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
Therefore: $P(X \in[a, b])=F_{X}(b)-F_{X}(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$

Continuous Random Variables

Probability Density Function (PDF).
$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Density \neq Probability !

$$
\begin{aligned}
P(X \in[a, b]) & =\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& =F_{X}(b)-F_{X}(a)
\end{aligned}
$$

$$
F_{X}(y)=P(x \leq y)
$$

Probability: Inclusion-Exclusion

Let A, B be events. Then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

In general, if $A_{1}, A_{2}, \ldots, A_{n}$ are events, then

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup \cdots \cup\right. & \left.A_{n}\right)=\text { singles }- \text { doubles }+ \text { triples }- \text { quads }+\ldots \\
= & \left(P\left(A_{1}\right)+\cdots+P\left(A_{n}\right)\right) \\
& -\left(P\left(A_{1} \cap A_{2}\right)+\ldots+P\left(A_{n-2} \cap A_{n}\right)+P\left(A_{n-1} \cap A_{n}\right)\right) \\
& +\ldots
\end{aligned}
$$

Conditional Probability

- Conditional Probability

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

- Bayes Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad \text { if } P(A) \neq 0, P(B) \neq 0
$$

- Law of Total Probability E_{1}, \ldots, E_{n} partition Ω

$$
P(F)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Chain rule \& Independence

Theorem. (Chain Rule) For events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\begin{aligned}
P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot & P\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

Definition. Two events A and A are (statistically) independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

"Equivalently." $P(A \mid B)=P(A)$.

Definition. Two events A and B are independent conditioned on C if

$$
P(C) \neq 0 \text { and } P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) .
$$

Multiple Events - Mutual Independence

Definition. Events A_{1}, \ldots, A_{n} are mutually independent if for every non-empty subset $I \subseteq\{1, \ldots, n\}$, we have

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right) .
$$

Expected Value of a Random Variable (Discrete Case)

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Linearity of Expectation

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity of Expectation with Indicator Variables.

We flip n coins, each one heads with probability p
Z is the number of heads, what is $\mathbb{E}[Z]$?

- $\quad X_{i}= \begin{cases}1, & i^{\text {th }} \text { coin flip is heads } \\ 0, & i^{\text {th }} \text { coin flip is tails. }\end{cases}$

Fact. $Z=X_{1}+\cdots+X_{n}$

Linearity of Expectation:

$$
\mathbb{E}[Z]=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \cdot p
$$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left[X_{i}\right]=p \cdot 1+(1-p) \cdot 0=p
$$

No independence required for Linearity of Expectation

Each coin shows up heads half the time.

Two fair coins

$P(H T)=P(T H)=0.25$
$P(H H)=P(T T)=0.25$
$\mathbb{E}(X)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1$

Glued coins

$P(H T)=P(T H)=0.5$

$$
P(H H)=P(T T)=0
$$

$\mathbb{E}(X)=1 \cdot 1=1$

Attached coins

$$
\begin{aligned}
& P(H H)=P(T T)=0.4 \\
& P(H T)=P(T H)=0.1 \\
& \mathbb{E}(\mathrm{X})=1 \cdot 0.2+2 \cdot 0.4=1 \\
& 28
\end{aligned}
$$

LOTUS: Expected Value of $g(X)$ (Discrete Case)

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in X(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$

Variance (Discrete Case)

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Definition. The standard deviation of a (discrete) $\mathrm{RV} X$ is $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$

Note. For any $a \geq 0, b \in \mathbb{R}, \sigma_{a \cdot X+\mathrm{b}}=a \cdot \sigma_{X}$

Expectation \& Variance of a Continuous Random Variable

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \mathrm{~d} x=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

LOTUS: Expected Value of $g(X)$ (Continuous)

Definition. Given a continuous $\mathrm{RV} X: \mathbb{R} \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Review: From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Properties of Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega_{X, Y}=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega_{X} \times \Omega_{Y}
$$

Note that

$$
\sum_{(s, t) \in \Omega_{X, Y}} p_{X, Y}(s, t)=1
$$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
p_{X}(a)=\sum_{b \in \Omega_{Y}} p_{X, Y}(a, b)
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega_{X}} p_{X, Y}(a, b)$

Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$
for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y$
The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

Independence and joint distributions

Discrete random variables X and Y are independent iff

- $p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)$ for all $x \in \Omega_{X}, y \in \Omega_{Y}$

Continuous random variables X and Y are independent iff

- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$ for all $x, y \in \mathbb{R}$

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Notes:

- Can be phrased as a "random variable version"

$$
\mathbb{E}[X \mid Y=y]
$$

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

Reference Sheet

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{r} \sum_{v} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

Theorem (Chebyshev's Inequality). Let X be a random variable. Then, for any $t>0$,

$$
P(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Chernoff-Hoeffding Bound

Theorem. Let $X=X_{1}+\cdots+X_{n}$ be a sum of independent RVs, each taking values in $[0,1]$, such that $\mathbb{E}[X]=\mu$. Then, for every $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}}
$$

Example: If $X \sim \operatorname{Bin}(n, p)$, then $X=X_{1}+\cdots+X_{n}$ is a sum of independent
$\{0,1\}$-Bernoulli variables, and $\mu=n p$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Union Bound

Theorem (Union Bound). Let A_{1}, \ldots, A_{n} be arbitrary events. Then,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

Intuition (3 evts.):

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$
Expectation: $\mathbb{E}[X]=p \quad$ Note: $\mathbb{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)$
Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathbb{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF: $P(X=k)=(1-p)^{k-1} p$
Expectation: $\mathbb{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Uniform Distribution (Discrete)

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \operatorname{Unif}[a, b]$
PMF: $\mathrm{P}(X=i)=\frac{1}{b-a+1}$
Expectation: $\mathbb{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is Unif[1,6]:

- $P(X=i)=1 / 6$
- $\mathbb{E}[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Uniform Distribution (Continuous)

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
F_{X}(y)=\left\{\begin{array}{cc}
\frac{0}{x-a} & x<a \\
\frac{x-a}{b} & x>b, b] \\
1 & x>b
\end{array}\right.
$$

$$
\mathbb{E}[X]=\frac{a+b}{2}
$$

$$
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

Poisson Distribution

- X is a Poisson r.v. with parameter λ (denoted $X \sim \operatorname{Poi}(\lambda)$) with this distribution (PMF): For all non-negative integers $k=0,1,2, \ldots$

$$
P(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

- $\mathbb{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$

Distribution of the \# of events that happen, independently, at an average rate of λ per unit time: car arrivals, customers, radioactive decay

Theorem. Let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ be independent. Set $Z=\Sigma_{i} X_{i}$. Then $Z \sim \operatorname{Poi}(\lambda)$ for $\lambda=\Sigma_{i} \lambda_{i}$.

Exponential Distribution

$$
P(X>t)=e^{-t \lambda}
$$

An exponential random variable X with parameter $\lambda \geq 0$
$(X \sim \operatorname{Exp}(\lambda))$ follows the exponential density $f_{X}(x)=\left\{\begin{array}{cl}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array}\right.$
$\begin{array}{c:c}\text { CDF: For } y \geq 0, & \mathbb{E}[X]=\frac{1}{\lambda} \quad \operatorname{Var}(X)=\frac{1}{\lambda^{2}} \\ F_{X}(y)=1-e^{-\lambda y} & \end{array}$
Distribution of waiting time until next event if rate per unit time is λ

Theorem. $X \sim \operatorname{Exp}(\lambda)$ is memoryless: i.e. for all $s, t>0$,

$$
P(X>s+t \mid X>s)=P(X>t) .
$$

The Normal Distribution

A Gaussian (or normal) random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Carl Friedrich Gauss

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}[X]=\mu$, and $\operatorname{Var}(X)=\sigma^{2}$
Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$
Cor: $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$
Fact: Sum of independent normals is normal

Independent and Identically Distributed (i.i.d.) RVs

Let X_{1}, \ldots, X_{n} random variables, each chosen independently with the same (identical) distribution having expectation μ and variance σ^{2}

$$
\begin{aligned}
& \mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \mu \\
& \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2}
\end{aligned}
$$

Empirical observation: $X_{1}+\cdots+X_{n}$ looks like a normal RV as n grows.

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ for $\mu=\mathbb{E}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

Normal approximation

- Let \bar{X} be the average of i.i.d. random variables X_{1}, \ldots, X_{n} with mean μ and variance σ^{2}.
- CLT says that $\frac{\sqrt{n} \cdot(\bar{X}-\mu)}{\sigma}$ approaches $\mathcal{N}(0,1)$ standard unit normal
- Approximate using CDF of $\mathcal{N}(0,1)$
$\Phi(z)=P(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-x^{2} / 2} \mathrm{~d} x$ for $Z \sim \mathcal{N}(0,1)$
Note: $\Phi(z)$ has no closed form - generally given via tables
Within 1 standard deviation 68% within 2 standard deviations $95 \%, 3$ s.d.'s 99%

Review

Table of $\Phi(z)$ CDF of Standard Normal Distribution
Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.857	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.9920	0.99224	0.99245	0.9926	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

Continuity Correction

Round to next integer!

To estimate probability that discrete RV lands in set S of integers include all surrounding values that round to S.
For interval $\{a, \ldots, b\}$, compute probability for interval $\left[a-\frac{1}{2}, b+\frac{1}{2}\right]$.

Parameter Estimation - Workflow

$\theta=$ unknown parameter

Example: coin flip distribution with unknown $\theta=$ probability of heads

> Observation: HTTHHHTHT HTTTT HT HTTTTTHT

Goal: Estimate θ

Maximum Likelihood Estimation (MLE)

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter (or vector of parameters) θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$

4. Differentiate Compute $\frac{\partial}{\partial \theta_{j}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ for each parameter in θ (also check discontinuities)
5. Solve for $\hat{\theta}$ by setting derivatives to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Unbiased Estimators

Independent
samples
X_{1}, \ldots, X_{n}
from $P(x ; \theta)$

$\theta=\underline{\text { unknown }}$ parameter
An estimation algorithm like MLE defines $\hat{\theta}_{n}$ as a function of the random variables X_{1}, \ldots, X_{n}.
$\hat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)$ is a r.v. whose expectation we can evaluate using LOTUS.
Definition. An estimator is unbiased if $\mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$ for all $n \geq 1$.

Estimators for the Normal Distribution

Normal outcomes X_{1}, \ldots, X_{n} i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\mu}=\frac{\sum_{i}^{n} X_{i}}{n}
$$

Sample mean (MLE) - Unbiased!

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Population variance (MLE) - Biased!

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Sample variance - Unbiased!

But population variance (like every MLE) is consistent in that $\lim _{n \rightarrow \infty} \mathbb{E}\left[\widehat{\theta}_{\sigma^{2}}\right]=\sigma^{2}$.

Markov chain

At each time step t

- Can be in one of a set of states

This kind of random process is called a Markov Chain

- Work, Surf, Email
- If I am in some state s at time t
- the labels of out-edges of s give the probabilities of moving to each of the states at time $t+1$ (as well as staying the same)
- so labels on out-edges sum to 1
e.g. If in Email, there is a 50-50 chance it will be in each of Work or Email at the next time step, but it will never be in state Surf in the next step.

Transition Probability Matrix and distribution of $X^{(t)}$

$$
\begin{aligned}
& {\left[q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)}\right]} \\
& \quad \text { Vector-matrix } \\
& \text { multiplication }
\end{aligned}
$$

M is the Transition Probability Matrix
Probability vector for state variable $X^{(t)}$ at time $t: \boldsymbol{q}^{(t)}=\left[q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)}\right]$
For all $t \geq 0, \boldsymbol{q}^{(t+1)}=\boldsymbol{q}^{(t)} \boldsymbol{M}$
Equivalently, $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{t}$ for all $t \geq 0$

Stationary Distribution of a Markov Chain

Definition. The stationary distribution of a Markov Chain with n states is the n-dimensional row vector π such that

$$
\begin{gathered}
\pi M=\pi \\
\text { and } \pi \text { is a probability distribution }
\end{gathered}
$$

Intuition: Distribution over states at next step is the same as the distribution over states at the current step

Computing a Stationary Distribution

$$
\left[\pi_{W}, \pi_{S}, \pi_{\mathrm{E}}\right]\left[\begin{array}{ccc}
0.4 & 0.6 & 0 \\
0.1 & 0.6 & 0.3 \\
0.5 & 0 & 0.5
\end{array}\right]=\left[\pi_{W}, \pi_{S}, \pi_{E}\right]
$$ Solve system of equations:

Stationary Distribution satisfies

- $\pi=\pi M$, where $\pi=\left(\pi_{W}, \pi_{S}, \pi_{E}\right)$
- $\pi_{W}+\pi_{S}+\pi_{E}=1$

$\left[\begin{array}{rl}0.4 \cdot \pi_{W}+0.1 \cdot \pi_{S}+0.5 \cdot \pi_{E} & =\pi_{W} \\ 0.6 \cdot \pi_{W}+0.6 \cdot \pi_{S} & =\pi_{S} \\ 0.3 \cdot \pi_{S}+0.5 \cdot \pi_{E} & =\pi_{E} \\ \pi_{W}+\quad \pi_{S}+\quad \pi_{E} & =1\end{array}\right.$

Fundamental Theorem of Markov Chains

Intuition: $\boldsymbol{q}^{(t)}$ is the distribution of being at each state at time t computed by $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{t}$. Often as t gets large $\boldsymbol{q}^{(t)} \approx \boldsymbol{q}^{(t+1)}$.

Fundamental Theorem of Markov Chains: For a Markov Chain that is aperiodic* and irreducible*, with transition probabilities M and for any starting distribution $\boldsymbol{q}^{(0)}$ over the states

$$
\lim _{t \rightarrow \infty} \boldsymbol{q}^{(0)} \boldsymbol{M}^{t}=\pi
$$

where π is the stationary distribution of M (i.e., $\pi M=\pi$)
*These concepts are way beyond us but they turn out to cover a very large class of Markov chains of practical importance.

