
CSE 312

Foundations of Computing II

Lecture 28: Victory Lap, What’s Next, & Review
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What you’ve learned  …  

The essentials of probability and some statistics,

hands-on applications,

• Naïve Bayes SPAM filtering

• Bloom Filters

• MinHash for Distinct Elements

• Markov Chains and PageRank

some societal impact,

• Differential privacy

• Algorithmic fairness

and some Python…

a great headstart for CSE 446 (ML)
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What’s next?

• Some places to apply and extend your knowledge

– CSE 421 Algorithms - counting and more basic probability

– CSE 422 Toolkit for Modern Algorithms – probability everywhere

– CSE 426 Cryptography – randomness, reasoning about probability essential

– CSE 427 Computational Biology

– CSE 446 Machine Learning – this course + linear algebra essential

– CSE 447 Natural Language Processing

– CSE 473 Artificial Intelligence – Bayes nets, probability, etc.

– CSE 490Q Quantum Computing – the quantum world is inherently random 
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Agenda

• What you’ve learned

• What’s next

• Review
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Counting: Sum & Product Rules

• Sum rule:
If you can choose from

– EITHER one of � options,

– OR one of � options with NO overlap with the previous �,

then the number of possible outcomes of the experiment is � + �
• Product rule:

In a sequential process, if there are

– �� choices for the 1st step,

– �� choices for the 2nd step (given the first choice), ..., and

– �� choices for the �th step (given the previous choices),

then the total number of outcomes is �� × �� × �
 × ⋯ × ��
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Counting: Permutations & Combinations

6

Permutations. The number of orderings 
of � distinct objects

�! = � × � − 1 × ⋯ × 2 × 1

k-Permutations. The number of orderings of
only � out of � distinct objects 

� �, �
= � × � − 1 × ⋯ × � − � + 1

= �!
(� ��!)

Example: How many sequences in 1,2,3 

with no repeating elements?

Example: How many sequences of 5 distinct 

alphabet letters from �, �, … , � ?

Combinations / Binomial Coefficient. The number of 
ways to select � out of � objects, where ordering of 
the selected � does not matter:

�
� = �(�, �)

�! = �!
�! � − � ! 

Example: How many size-5 subsets of �, �, … , � ?

Example: How many shortest paths from Gates to Starbucks?

Example: How many solutions (��, … , ��) such that 

��, … , �� ≥ 0 and ∑ !�� � = �?



Counting:  When order only partly matters
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We often want to count # of partly ordered lists:

Let  " =  # of ways to produce fully ordered lists

� = # of partly ordered lists

# = # of ways to produce corresponding fully ordered list given a partly 
ordered list

Then " = � ⋅ # by the product rule.     Often " and # are easy to compute:

� = "/#
Dividing by # “removes” part of the order.



Multinomial Coefficients

If we have � types of objects (& total), with &' of the first type, &( of the second, …, and &) of the �th, then the number of 
orderings possible is

�
��, ��, ⋯ , �� = �!

��! ��! ⋯ ��! 



Counting using binary encoding/star and bars

The number of ways to distribute � indistinguishable balls 
into � distinguishable bins is

� + � − 1
� − 1 = � + � − 1

�
E.g., # of ways to add � non-negative integers up to �

Encode using one symbol (1 or *) for items, the other (0 or |) for dividers



Counting: Binomial Theorem
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Theorem. Let �, * ∈ ℝ and � ∈ ℕ a positive integer. Then,

� + * � = . �
� ��*���

�

�!/



Counting: Inclusion-Exclusion

Let �, � be sets. Then� ∪ � = � + � − |� ∩ �|
In general, if ��, ��, … , �� are sets, then

�� ∪ �� ∪ ⋯ ∪ �� = 34�5673 − 89:;673 + <=4>673 − ?:@83 + …
= �� + ⋯ + |��|  − �� ∩ �� + … + ���� ∩ �� + …
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Counting: Pigeonhole Principle

If there are � pigeons in � < � holes, then one hole must 

contain at least  �
� pigeons! 

Reason. Can’t have fractional number of pigeons

Syntax reminder:

• Ceiling: � is � rounded up to the nearest integer (e.g., 2.731 = 3)

• Floor: � is � rounded down to the nearest integer (e.g., 2.731 = 2)
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Probability

Examples:

• Single coin flip: Ω = {F, G}
• Two coin flips: Ω = {FF, FG, GF, GG}
• Roll of a die:  Ω = 1, 2, 3, 4, 5, 6

Examples:

• Getting at least one head in two coin flips: L =  {FF, FG, GF}
• Rolling an even number on a die :L =  {2, 4, 6}
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Definition. A sample space Ω is the set of 
all possible outcomes of an experiment. 

Definition. An event  L ⊆ Ω is a subset of 
possible outcomes. 



Discrete Probability

Definition. A (discrete) probability space 
is a pair (Ω, �) where:

• Ω is a set called the sample space.

• � is the probability measure, 

a function �: Ω → ℝ such that:

–  � � ≥ 0 for all � ∈ Ω
– ∑ � �PQ∈R = 1
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For  � ⊆ Ω: � � = . � �P
Q∈S

Ω�



Random Variables (Discrete Case)

Definition. A random variable (RV) for a probability space (Ω, �) is a function T: Ω → ℝ.

The set of values that T can take on is its range/support:  T(Ω) or ΩU
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T V = ��

T V = ��
T V = �


T V = �WT = � = V ∈ Ω  T V = � }
Random variables partition
the sample space.

ΣQ∈U(R)� T = � = 1



Probability Mass Function (PMF) and CDF (Discrete Case)
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For a RV T: Ω → ℝ, the probability mass function (pmf) of T
specifies, for any real number �, the probability that T = � >U � = � T = � = �( V ∈ Ω  T(V) = �})
For a RV T: Ω → ℝ, the cumulative distribution function (cdf) of T
specifies, for any real number �, the probability that T ≤ � ZU � = � T ≤ �

Definitions:

∑ >U � = 1PQ∈R[



� T ≈ *� T ≈ ] ≈ ^_U *^_U ] = _U *_U ]
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Probability Density Function 

* ]

Non-negativity: _U � ≥ 0 for all � ∈ ℝ

Normalization: ` _U �  d�bc
�c = 1

� @ ≤ T ≤ ; = d _U �  d�e
f

What _U(�) measures: The local rate at which probability accumulates 



Cumulative Distribution Function (Continuous Case)

Definition. The cumulative distribution function (cdf) of T is 

ZU @ = � T ≤ @ = ` _U �  d�f
�c
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Therefore: � T ∈ [@, ;] = ZU ; − ZU(@)
By the fundamental theorem of Calculus _U � = i

iQ ZU(�)

ZU is monotone increasing, since _U � ≥ 0. That is ZU j ≤ ZU 8 for j ≤ 8



Continuous Random Variables
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Probability Density Function (PDF).

_: ℝ → ℝ s.t.

• _ � ≥ 0 for all � ∈ ℝ
• ` _ �  d�bc

�c = 1

Cumulative Distribution Function (CDF).

Z * = d _(�) d�k
�c

Theorem. _ � = il(Q)
iQ

_(�)
*

Density ≠ Probability !

ZU * = � T ≤ *� T ∈ [@, ;] = d _U � d�e
f= ZU ; − ZU(@)



Probability: Inclusion-Exclusion

Let �, � be events. Then�(� ∪ �) = �(�) + �(�) − �(� ∩ �)
In general, if ��, ��, … , �� are events, then

�(�� ∪ �� ∪ ⋯ ∪ ��) = 34�5673 − 89:;673 + <=4>673 − ?:@83 + …
= � �� + ⋯ + �(��)  − � �� ∩ �� +  … + � ���� ∩ �� +  �(���� ∩ �� )                                     + …
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Conditional Probability

• Conditional Probability

• Bayes Theorem

• Law of Total Probability
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� � � = � � ∩ �
� �

� � � = � � � � �
� �

� Z = . � Z ∩ L =
�

 !�
. � Z L  �(L )

�

 !�

if � � ≠ 0, � � ≠ 0

L�, … , L� partition Ω



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let L�, L�, … , L� be a partition of the 
sample space, and Z and event. Then,

� L� Z) = � Z L� �(L�)
�(Z) = � Z L� � L�∑ � Z L � L � !�

Simple Partition: In particular, if L is an event with non-zero 
probability, then � L Z) = � Z L �(L)� Z L � L + � Z Ln �(Ln)
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Chain rule & Independence

23

Definition. Two events � and � are (statistically) independent if� � ∩ � = � � ⋅ �(�).
“Equivalently.” � �|� = � � .

Definition. Two events � and � are independent conditioned on o if� o ≠ 0 and � � ∩ � | o = � � | o ⋅ � �  o).

Theorem. (Chain Rule) For events ��, ��, … , �� , � �� ∩ ⋯ ∩ �� = � �� ⋅ � �� �� ⋅ �(�
|�� ∩ ��)⋯ �(��|�� ∩ �� ∩ ⋯ ∩ ����)



Multiple Events – Mutual Independence
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Definition. Events ��, … , �� are mutually independent if for every 
non-empty subset p ⊆ {1, … , �}, we have

� q � 
P

 ∈r = s �(� )P
 ∈r .



Expected Value of a Random Variable (Discrete Case)

Definition. Given a discrete RV T: Ω → ℝ, the expectation or expected 
value or mean of T is   t T = . T V ⋅ � (V)P

u∈R
or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= . � ⋅ >U(�)P
Q∈R[

t T = . � ⋅ � (T = �)P
Q∈v(R)



Linearity of Expectation
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Theorem. For any random variables T�, … , T�, and real numbers @�, … , @� ∈ ℝ,t[@�T� + ⋯ + @�T�] = @�t[T�] + ⋯ + @�t[T�].   

Very important: In general, we do not have t[T ⋅ w] = t[T] ⋅ t[w]



Linearity of Expectation with Indicator Variables.

We flip � coins, each one heads with probability >� is the number of heads, what is t[�]?   

- T = x1, 4th coin flip is heads 0, 4th coin flip is tails.  
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� T = 1 = >� T = 0 = 1 − >

Fact. � = T� + ⋯ + T�

t[T ] = > ⋅ 1 + 1 − > ⋅ 0 = >
Linearity of Expectation:t[�] = t[T� + ⋯ + T�] = t[T�] + ⋯ + t[T�] = � ⋅ >



No independence required for Linearity of Expectation
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Two fair coins

� FF = � GG = 0.4� FG = � GF = 0.1

Attached coins

� FG = � GF = 0.5� FF = � GG = 0

Glued coins

� FG = � GF = 0.25� FF = � GG = 0.25

Each coin shows up heads half the time.

t X = 1 ⋅ 12 + 2 ⋅ 14 = 1 t X = 1 ⋅ 1 = 1 t X = 1 ⋅ 0.2 + 2 ⋅ 0.4 = 1



LOTUS:  Expected Value of 5(T) (Discrete Case)

Definition. Given a discrete RV T: Ω → ℝ, the expectation or expected 
value or mean of 5(T) is t 5(T) = . 5 T V ⋅ � (V)P

u∈R
or equivalently
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= . 5(�) ⋅ >U(�)P
Q∈R[

t 5(T) = . 5(�) ⋅ � (T = �)P
Q∈U(R)

Also known as LOTUS: “Law of the unconscious statistician



Linearity is special!

In general t 5(T) ≠ 5 t[T]
E.g., T = x +1 with prob 1/2−1 with prob 1/2

Then: t[T�] ≠ t[T]�



Variance (Discrete Case)
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Definition. The variance of a (discrete) RV T isVar T = t T − t[T] � = ∑ >U � ⋅ � − t[T] �PQ

Theorem. Var T = t[T�] − t[T]�
Theorem. For any @, ; ∈ ℝ, Var @ ⋅ T + ; = @� ⋅ Var T

Definition. The standard deviation of a (discrete) RV T is �U = �@= TP

Note. For any @ ≥ 0, ; ∈ ℝ, �f⋅Ub� = @ ⋅ �U



Expectation & Variance of a Continuous Random Variable
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Definition. The expected value of a continuous RV T is defined as

t[T] = d _U � ⋅ � d�bc
�c

Fact. t[@T + ;w + j] = @t[T] + ;t[w] + j
Definition. The variance of a continuous RV T is defined as

Var T = d _U � ⋅ � − t[T] � d�bc
�c

= t[T�] − t[T]�

Var @T + ; = @�Var(T)



LOTUS:  Expected Value of 5(T) (Continuous)

Definition. Given a continuous RV T: ℝ → ℝ, the expectation or 
expected value or mean of 5(T) is 

t 5(T) = d 5(�) _U �  8�c
�c
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Review: From Discrete to Continuous

Discrete Continuous

PMF/PDF >U � = � T = � _U � ≠ � T = � = 0
CDF  ZU � = . >U(<)

P

� � Q
ZU � = d _U <  8<Q

�c
Normalization . >U � = 1

P

Q
d _U �  8� = 1c

�c
Expectation t 5 T = . 5 �  >U(�)

P

Q
t 5 T = d 5 �  _U �  8�c

�c



Properties of Independent Random Variables

35

Theorem. If T, w independent, t[T ⋅ w] = t[T] ⋅ t[w]

Theorem. If T, w independent, Var T + w = Var T + Var w
Corollary. If T�, T�, …, T� mutually independent, 

Var . T 
�

 !�
= . Var(T )

�

 



Joint PMFs and Joint Range
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Definition. Let T and w be discrete random variables. The Joint PMF  
of T and w is

>U,�(@, ;) = � (T = @, w = ;)

Definition. The joint range of >U,� is

ΩU,� = j, 8 ∶ >U,� j, 8 > 0 ⊆ ΩU × Ω�

Note that

. >U,� 3, < = 1
P

�,� ∈R[,�



Marginal PMF
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Definition. Let T and w be discrete random variables and >U,� @, ;
their joint PMF. The marginal PMF  of T

>U(@) = . >U,�(@, ;)
P

e∈R�

Similarly,  >�(;) = ∑ >U,�(@, ;)Pf∈R[



Continuous distributions on ℝ × ℝ
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Definition. The joint probability density function (PDF) of continuous 
random variables T and w is a function _U,� defined on ℝ × ℝ such that 

• _U,� �, * ≥ 0 for all �, * ∈ ℝ
• ` ` _U,� �, * d� d* = 1c

�c
c

�c
for � ⊆ ℝ × ℝ the probability that T, w ∈ � is ∬ _U,� �, *  d�d*�
The  (marginal) PDFs _U and _� are given by

– _U � = ` _U,� �, *  d*c
�c

– _� * = ` _U,� �, *  d�c
�c



Independence and joint distributions
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Continuous random variables T and w are independent iff

• _U,� �, * = _U � ⋅ _�(*) for all �, * ∈ ℝ

Discrete random variables T and w are independent iff

• >U,� �, * = >U � ⋅ >�(*) for all � ∈ ΩU, * ∈ Ω�



Conditional Expectation
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Definition. Let T be a discrete random variable then the conditional 
expectation of T given event � is

t T  �] = . � ⋅ � T = � �)
P

Q  ∈ R[

Notes:
• Can be phrased as a “random variable version”t T  w = *]
• Linearity of expectation still applies heret @T + ;w + j  �] = @ t T  �] + ; t w  �] + j



Law of Total Expectation
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Law of Total Expectation (event version). Let T be a random variable 
and let events ��, … , �� partition the sample space. Then,

t[T] = . t T  � ⋅ � (� )
�

 !�

Law of Total Expectation (random variable version). Let T be a 
random variable and w be a discrete random variable. Then,

t[T] = . t T  w = * ⋅ � (w = *)
P

k ∈R�



Reference Sheet
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Markov’s and Chebyshev’s Inequalities
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Theorem (Markov’s Inequality). Let T be a random variable taking 
only non-negative values. Then, for any < > 0,

� T ≥ < ≤ t[U]
� . 

Theorem (Chebyshev’s Inequality). Let T be a random variable. Then, 
for any < > 0,

� |T − t[T]| ≥ < ≤ ��� U
�� . 



Chernoff-Hoeffding Bound
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Theorem. Let T = T� + ⋯ + T� be a sum of independent RVs, each 
taking values in [0,1], such that t[T] = �. Then, for every � ∈ [0,1],

� T − � ≥ � ⋅ � ≤ 7� ���
� . 

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If T~Bin(�, >), then T = T� + ⋯ + T� is a sum of independent     
{0,1}-Bernoulli variables, and � = �>

Note: More accurate versions are possible, but with more cumbersome right-
hand side (e.g., see textbook)



Union Bound

Intuition (3 evts.):
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Theorem (Union Bound). Let ��, … , �� be arbitrary events. Then,

� ¢ � 
�

 !�
≤ . �(� )

�

 !�

�� ��

�




Bernoulli Random Variables

A random variable T that takes value 1 (“Success”) with probability >, 
and 0 (“Failure”) otherwise. T is called a Bernoulli random variable.

Notation: T ∼ Ber(>)
PMF: � T = 1 = >,  � T = 0 = 1 − >
Expectation: t T = > Note: t T� = >
Variance: Var T = t T� − t T � = > − >� = >(1 − >)
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Examples:
• Coin flip
• Randomly guessing on a 

MC test question
• A server in a cluster fails
• Any indicator RV



Binomial Random Variables

A discrete random variable T that is the number of successes in �
independent random variables w ∼ Ber > .                                                     T is a Binomial random variable where  T = ∑ w � !�
Notation: T ∼ Bin(�, >)
PMF: � T = � = �� >� 1 − > ���
Expectation: t T = �>
Variance: Var T = �>(1 − >)
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Geometric Random Variables

A discrete random variable T that models the number of independent 
trials w ∼ Ber > before seeing the first success.T is called a Geometric random variable with parameter >. 

Notation: T ∼ Geo(>)
PMF: � T = � = 1 − > ���>
Expectation: t T = �¥
Variance: Var T = ��¥¥�
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Examples:
• # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Uniform Distribution (Discrete)

A discrete random variable T equally likely to take any (integer) value 
between integers @ and ; (inclusive), is uniform.

Notation: T ∼ Unif[@, ;]
PMF: P T = 4 = �e �fb�
Expectation: t T = fbe�
Variance: Var(T) = (e�f)(e �fb�)��
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Example: value shown on one 
roll of a fair die is Unif[1,6]:

• �(T = 4) = 1/6
•  t T = 7/2
• Var T = 35/12



Uniform Distribution (Continuous)
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_U � = ¨ 1; − @ � ∈ [@, ;]0 else

0

1; − @

T ∼ Unif(@, ;)

@ ;

ZU * = © 0 � < @� − @; − @ � ∈ [@, ;]1 � > ;
t T = @ + ;2

Var T = ; − @ �12



• T is a Poisson r.v. with parameter ª (denoted T ~ Poi(ª)) with 
this distribution (PMF):  For all non-negative integers � = 0, 1, 2, …� � = � = 7�« ⋅ ª��! 

• t[T] = ª and Var T = ª

Poisson Distribution

51

Siméon Denis Poisson

1781-1840

Distribution of the # of events that happen, independently, at an average

rate of ª per unit time:    car arrivals, customers, radioactive decay 

Theorem. Let T�~Poi ª� , ⋯ , T�~Poi(ª�) be independent.                  

Set � = Σ T . Then  �~Poi ª for ª = Σ ª .

Limit as � → ∞ ofBin(�, >) for > = ª/�



Exponential Distribution

An exponential random variable T with parameter ª ≥ 0
(T ∼ Exp ª ) follows the exponential density _U � = xª7�«Q � ≥ 00 � < 0
CDF: For * ≥ 0,  ZU * = 1 − 7�«k

� T > < = 7��«

t[T] = 1
ª Var T = 1

ª�

Theorem. T ∼ Exp ª  is memoryless: i.e. for all 3, < > 0,

� T > 3 + <  T > 3) = � T > < .

Distribution of waiting time until next event if rate per unit time is λ



The Normal Distribution

53

A Gaussian (or normal) random variable T ∼ °(�, ��)
with parameters � ∈ ℝ and � ≥ 0 has density

_U � = �
�±P  ² 7� ³´� �

�µ�
Carl Friedrich 
Gauss

Fact. If T ∼ ° �, �� , then t[T] = �, and Var T = ��

Fact. If T ∼ ° �, �� , then w = @T + ; ∼ ° @� + ;, @���

Cor:
U�¶

² ∼ ° 0, 1 Fact:  Sum of independent normals is normal



Independent and Identically Distributed (i.i.d.) RVs
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Let T�, … , T� random variables, each chosen independently with the 
same (identical) distribution having expectation � and variance ��

t T� + ⋯ + T� = t[T�] + ⋯ + t[T�] = ��
Var(T� + ⋯ + T�) = Var T� + ⋯ + Var T� = ���

Empirical observation: T� + ⋯ + T� looks like a normal RV as � grows. 



Central Limit Theorem
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Theorem. (Central Limit Theorem) The CDF of w� converges to the 
CDF of the standard normal °(0,1), i.e.,

lim�→c � w� ≤ * = 1
2¸P d 7�Q�/�d�

k

�c

w� = T� + ⋯+ T� − ��
� �P

Also stated as:
• lim�→c w� → °(0,1)
• lim�→c

�
� ∑ T →� !� ° �, ²�

� for � = t[T ] and �� = Var T 



Normal approximation

• Let T be the average of i.i.d. random variables T�, … , T� with mean �
and variance ��.

• CLT says that 
�P ⋅(U�¶)

² approaches °(0,1) standard unit normal

• Approximate using  CDF of °(0,1)
Φ ] = � � ≤ ] = �

�±P ` 7�Q�/�d�º
�c  for � ∼ ° 0, 1

56

Note: Φ ]  has no closed form – generally given via tables 

Within 1 standard deviation 68% within 2 standard deviations 95%, 3 s.d.’s 99%



Review
Table of »(¼) CDF of 
Standard Normal 
Distribution
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Continuity Correction 

Round to next integer!

58

To estimate probability that discrete RV lands in set ½ of integers include 
all surrounding values that round to ½.                                                                

For interval {@, … , ;}, compute probability for interval @ − �
� , ; + �

� .



Parameter Estimation – Workflow
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Distribution�(�; ¿)
Independent 
samples T�, … , T�
from �(�; ¿)

Estimation

Algorithm
¿À

Parameter 
estimate

¿ = unknown parameter

Example: coin flip distribution with unknown ¿ = probability of heads  

Observation:  FGGFFFGFGFGGGGFGFGGGGGFG
Goal: Estimate ¿



Maximum Likelihood Estimation (MLE)

1. Input Given � i.i.d. samples ��, … , �� from parametric model with parameter (or 
vector of parameters) ¿.

2. Likelihood Define your likelihood ℒ ��, … . , ��  ¿ .
– For discrete ℒ ��, … . , ��  ¿ = ∏ � �  ; ¿� !�
– For continuous ℒ ��, … . , ��  ¿ = ∏ _ �  ; ¿� !�

3. Log Compute ln ℒ ��, … . , ��  ¿
4. Differentiate Compute 

Ã
ÃÄÅ ln ℒ ��, … . , ��  ¿ for each parameter in ¿ (also check 

discontinuities)

5. Solve for ¿Æ by setting derivatives to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we 
won’t ask you to do that in CSE 312.
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Unbiased Estimators

61

Definition. An estimator is unbiased if t ¿À� = ¿ for all � ≥ 1.

Distribution�(�; ¿)
Independent 
samples T�, … , T�
from �(�; ¿)

Estimation

Algorithm
¿À�

Parameter 
estimate

¿ = unknown parameter

An estimation algorithm like MLE defines ¿À� as a function of the random 
variables T�, … , T�.¿À�(T�, … , T�) is a r.v. whose expectation we can evaluate using LOTUS.



Estimators for the Normal Distribution
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Normal outcomes T�, … , T� i.i.d. according to °(�, ��) Assume: �� > 0

½�� = 1
� − 1 . T − ΘÈ¶ ��

 !�
Sample variance – Unbiased!

ΘÈ²� = 1
� . T − ΘÈ¶ ��

 !�
Population variance (MLE) – Biased!

ΘÈ¶ = ∑ T � � Sample mean (MLE) – Unbiased!

But population variance (like every MLE) is consistent in that lim�→ct ¿Æ²� = ��.



Markov chain

At each time step <
– Can be in one of a set of 

states

• Work, Surf, Email

– If I am in some state 3 at time <
• the labels of out-edges of 3 give the probabilities of moving to 

each of the states at time < + 1 (as well as staying the same)

– so labels on out-edges sum to 1
63

e.g. If in Email, there is a 50-50 chance it will be in each of Work or Email at the 
next time step, but it will never be in state Surf in the next step.

This kind of 

random process 

is called a 

Markov Chain



Transition Probability Matrix and distribution of T �
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[?É� , ?Ê� , ?Ë� ] 0.4 0.6 00.1 0.6 0.30.5 0 0.5
= [?É�b� , ?Ê�b� , ?Ë�b� ]

Vector-matrix 
multiplication

Ì

Probability vector for state variable T � at time <:   Í � = [?É� , ?Ê� , ?Ë� ]
For all < ≥ 0,  Í �b� = Í � Ì

Ì is the Transition Probability Matrix

Equivalently,   Í � = Í / Ì� for all < ≥ 0



Stationary Distribution of a Markov Chain
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Definition. The stationary distribution of a Markov Chain with �
states is the �-dimensional row vector Î such thatÎÌ = Î

and Î is a probability distribution

Intuition: Distribution over states at next step is the same as the 
distribution over states at the current step



Computing a Stationary Distribution
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[¸É, ¸Ê, ¸Ï] 0.4 0.6 00.1 0.6 0.30.5 0 0.5
= [¸É, ¸Ê, ¸Ë]

Stationary Distribution satisfies

• Î  =   ÎÌ, where  Î = (¸É, ¸Ê, ¸Ë)
• ¸É + ¸Ê + ¸Ë = 1
 ¸É = �/


W ,   ¸Ê = �Ð

W ,   ¸Ë = Ñ


W

Solve system of equations:

0.4 ⋅ ¸É + 0.1 ⋅ ¸Ê + 0.5 ⋅ ¸Ë = ¸É
0.6 ⋅ ¸É + 0.6 ⋅ ¸Ê                     = ¸Ê

 0.3 ⋅ ¸Ê + 0.5 ⋅ ¸Ë = ¸Ë
¸É +         ¸Ê +         ¸Ë = 1



Fundamental Theorem of Markov Chains
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Intuition: Í(�) is the distribution of being at each state at time <
computed by Í(�) = Í(/)Ì�. Often as < gets large Í � ≈ Í �b� .
Fundamental Theorem of Markov Chains :  For a Markov Chain that is 
aperiodic* and irreducible*, with transition probabilities Ì and for any 
starting distribution Í(/) over the states

lim�→c Í(/)Ì� = Î
where Î is the stationary distribution of Ì (i.e., ÎÌ = Î )

*These concepts are way beyond us but they turn out to cover a very large class of               

Markov chains of practical importance.


