
CSE 312: Foundations of Computing II
Section 6: Continuous Random Variables

1. Review of Main Concepts
(a) Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y (x, y) = P(X = x, Y = y) fX,Y (x, y) 6= P(X = x, Y = y)

Joint range/support
ΩX,Y {(x, y) ∈ ΩX × ΩY : pX,Y (x, y) > 0} {(x, y) ∈ ΩX × ΩY : fX,Y (x, y) > 0}
Joint CDF FX,Y (x, y) =

∑
t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =

∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E[g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)
must have ΩX,Y = ΩX × ΩY ΩX,Y = ΩX × ΩY

(b) Law of Total Probability (r.v. version): If X is a discrete random variable, then

P(A) =
∑
x∈ΩX

P(A|X = x)pX(x) discrete X

(c) Law of Total Expectation (Event Version): Let X be a discrete random variable, and let events
A1, ..., An partition the sample space. Then,

E[X] =

n∑
i=1

E[X | Ai]P(Ai)

(d) Conditional Expectation: See table bbelow. Note that linearity of expectation still applies to conditional
expectation: E[X + Y | A] = E[X | A] + E[Y | A]

(e) Law of Total Expectation (r.v. Version): Suppose X and Y are random variables. Then,

E[X] =
∑
y

E[X | Y = y] pY (y) discrete version.

(f) Conditional distributions
Discrete Continuous

Conditional PMF/PDF pX|Y (x|y) =
pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Expectation E[X | Y = y] =
∑

x xpX|Y (x|y) E[X | Y = y] =
∫∞
−∞ xfX|Y (x|y)dx

(g)

• Law of Total Probability (continuous)

P(A) =

∫
x∈ΩX

P(A|X = x)fX(x)dx

• Law of total expectation (continuous)

E[X] =

∫
y∈ΩY

E[X | Y = y] fY (y)dy
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Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤
E[−NoV alue−][X]

α .
Chebyshev’s Inequality: Suppose Y is a random variable with E[−NoV alue−] [Y ] = µ and Var (Y ) =

σ2. Then, for any α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2

Chernoff Bound (for the Binomial): Suppose X ∼ Bin(n, p) and µ = np. Then, for any 0 < δ < 1

2. Zoo of Continuous Random Variables
(a) Uniform: X ∼ Uniform(a, b) iff X has the following probability density function:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

E[X] = a+b
2 and V ar(X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely.

(b) Exponential: X ∼ Exponential(λ) iff X has the following probability density function:

fX (x) =

{
λe−λx if x ≥ 0
0 otherwise

E[X] = 1
λ and V ar(X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event,
where λ > 0 is the average number of events per unit time. Note that the exponential measures how
much time passes until the next event (any real number, continuous), whereas the Poisson measures how
many events occur in a unit of time (nonnegative integer, discrete). The exponential random variable X
is memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P(X > t)

The geometric random variable also has this property.

3. Create the distribution
Suppose X is a continuous random variable that is uniform on [0, 1] and uniform on [1, 2], but

P(1 ≤ X ≤ 2) = 2 · P(0 ≤ X < 1).

Outside of [0, 2] the density is 0. What is the PDF and CDF of X?

4. Max of uniforms
Let U1, U2, . . . , Un be mutually independent Uniform random variables on (0, 1). Find the CDF and PDF for
the random variable Z = max(U1, . . . , Un).

5. Batteries and exponential distributions
Let X1, X2 be independent exponential random variables, where Xi has parameter λi, for 1 ≤ i ≤ 2. Let
Y = min(X1, X2).

(a) Show that Y is an exponential random variable with parameter λ = λ1 + λ2. Hint: Start by computing
P(Y > y). Two random variables with the same CDF have the same pdf. Why?

(b) What is Pr(X1 < X2)? (Use the law of total probability.) The law of total probability hasn’t been
covered in class yet, but will be soon at which point it would be good to revisit this problem!
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(c) You have a digital camera that requires two batteries to operate. You purchase n batteries, labelled
1, 2, . . . , n, each of which has a lifetime that is exponentially distributed with parameter λ, independently
of all other batteries. Initially, you install batteries 1 and 2. Each time a battery fails, you replace it with
the lowest-numbered unused battery. At the end of this process, you will be left with just one working
battery. What is the expected total time until the end of the process? Justify your answer.

(d) In the scenario of the previous part, what is the probability that battery i is the last remaining battery as
a function of i? (You might want to use the memoryless property of the exponential distribution that has
been discussed.)

6. Continuous joint density I
The joint probability density function of X and Y is given by

fX,Y (x, y) =

{
6
7

(
x2 + xy

2

)
0 < x < 1, 0 < y < 2

0 otherwise.

(a) Verify that this is indeed a joint density function.

(b) Compute the marginal density function of X.

(c) Find Pr(X > Y ). (Uses the continuous law of total probability which we have not covered in class as of
11/17.)

(d) Find P (Y > 1
2 |X < 1

2).

(e) Find E(X).

(f) Find E(Y )

7. Continuous joint density II
The joint density of X and Y is given by

fX,Y (x, y) =

{
xe−(x+y) x > 0, y > 0

0 otherwise.

and the joint density of W and V is given by

fW,V (w, v) =

{
2 0 < w < v, 0 < v < 1

0 otherwise.

Are X and Y independent? Are W and V independent?

8. Variance of the geometric distribution
Independent trials each resulting in a success with probability p are successively performed. Let N be the time
of the first success. Find the variance of N .

9. 3 points on a line
(This problem uses the continuous law of total probability which has not yet be covered in class.) Three points
X1, X2, X3 are selected at random on a line L (continuous independent uniform distributions). What is the
probability that X2 lies between X1 and X3?
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10. In between
(Covers ideas that have not been covered in class.) Suppose that X1 and X2 are discrete uniform random
variables in {1, . . . , 2n} (i.e., X1 and X2 are equally likely to take any of the values 1, . . . , 2n) and let Y =
min(X1, X2). What is the conditional pmf pY |X1

(y | x1) and conditional CDF FY |X1
(y | x1). What is

E[Y | X1 = x1]? (For the definitions of conditional pmf, conditional CDF, see the review at the top of this
worksheet.)

11. Tail bounds
Suppose X ∼ Binomial(6, 0.4). We will bound P(X ≥ 4) using the tail bounds we’ve learned, and compare this
to the true result.

(a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?

(b) Give an upper bound for this probability using Chebyshev’s inequality. You may have to rearrange alge-
braically and it may result in a weaker bound.

(c) Give an upper bound for this probability using the Chernoff bound.

(d) Give the exact probability.
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