
CSE 312: Foundations of Computing II
Section 6: Continuous Random Variables

1. Review of Main Concepts
(a) Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y (x, y) = P(X = x, Y = y) fX,Y (x, y) 6= P(X = x, Y = y)

Joint range/support
ΩX,Y {(x, y) ∈ ΩX × ΩY : pX,Y (x, y) > 0} {(x, y) ∈ ΩX × ΩY : fX,Y (x, y) > 0}
Joint CDF FX,Y (x, y) =

∑
t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =

∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E[g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)
must have ΩX,Y = ΩX × ΩY ΩX,Y = ΩX × ΩY

(b) Law of Total Probability (r.v. version): If X is a discrete random variable, then

P(A) =
∑
x∈ΩX

P(A|X = x)pX(x) discrete X

(c) Law of Total Expectation (Event Version): Let X be a discrete random variable, and let events
A1, ..., An partition the sample space. Then,

E[X] =

n∑
i=1

E[X | Ai]P(Ai)

(d) Conditional Expectation: See table bbelow. Note that linearity of expectation still applies to conditional
expectation: E[X + Y | A] = E[X | A] + E[Y | A]

(e) Law of Total Expectation (r.v. Version): Suppose X and Y are random variables. Then,

E[X] =
∑
y

E[X | Y = y] pY (y) discrete version.

(f) Conditional distributions
Discrete Continuous

Conditional PMF/PDF pX|Y (x|y) =
pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Expectation E[X | Y = y] =
∑

x xpX|Y (x|y) E[X | Y = y] =
∫∞
−∞ xfX|Y (x|y)dx

(g)

• Law of Total Probability (continuous)

P(A) =

∫
x∈ΩX

P(A|X = x)fX(x)dx

• Law of total expectation (continuous)

E[X] =

∫
y∈ΩY

E[X | Y = y] fY (y)dy
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Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤
E[−NoV alue−][X]

α .
Chebyshev’s Inequality: Suppose Y is a random variable with E[−NoV alue−] [Y ] = µ and Var (Y ) =

σ2. Then, for any α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2

Chernoff Bound (for the Binomial): Suppose X ∼ Bin(n, p) and µ = np. Then, for any 0 < δ < 1

2. Zoo of Continuous Random Variables
(a) Uniform: X ∼ Uniform(a, b) iff X has the following probability density function:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

E[X] = a+b
2 and V ar(X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely.

(b) Exponential: X ∼ Exponential(λ) iff X has the following probability density function:

fX (x) =

{
λe−λx if x ≥ 0
0 otherwise

E[X] = 1
λ and V ar(X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event,
where λ > 0 is the average number of events per unit time. Note that the exponential measures how
much time passes until the next event (any real number, continuous), whereas the Poisson measures how
many events occur in a unit of time (nonnegative integer, discrete). The exponential random variable X
is memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P(X > t)

The geometric random variable also has this property.

3. Create the distribution
Suppose X is a continuous random variable that is uniform on [0, 1] and uniform on [1, 2], but

P(1 ≤ X ≤ 2) = 2 · P(0 ≤ X < 1).

Outside of [0, 2] the density is 0. What is the PDF and CDF of X?
Solution:
The fact that X is uniform on each of the intervals means that its PDF is constant on each. So,

fX(x) =


c 0 < x ≤ 1

d 1 < x ≤ 2

0 otherwise

Note that FX(1)− FX(0) = c and FX(2)− FX(1) = d. The area under the PDF must be 1, so

1 = FX(2)− FX(0) = FX(2)− FX(1) + FX(1)− FX(0) = d+ c

Additionally,

d = FX(2)− FX(1) = P(1 ≤ X ≤ 2) = 2 · P(0 ≤ X ≤ 1) = 2 · (FX(1)− FX(0)) = 2c
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To solve for c and d in our PDF, we need only solve the system of two equations from above: d+ c = 1, d = 2c.
So, d = 2

3 and c = 1
3 . Taking the integral of the PDF yields the CDF, which looks like

FX(x) =


0 x ≤ 0
1
3x 0 < x ≤ 1
2
3x− 1

3 1 < x ≤ 2

1 x > 2

4. Max of uniforms
Let U1, U2, . . . , Un be mutually independent Uniform random variables on (0, 1). Find the CDF and PDF for
the random variable Z = max(U1, . . . , Un).
Solution:
The key idea for solving this question is realizing that the max of n numbers max(a1, ..., an) is less than some
constant c, if and only if each individual number is less than that constant c (i.e. ai < c for all i). Using this
idea, we get

FZ(x) = P(Z ≤ x) = P(max(U1, ..., Un) ≤ x)

= P(U1 ≤ x, ...., Un ≤ x)

= P(U1 ≤ x) · ... · P(Un ≤ x) [independence]
= FU1(x) · ... · FUn(x)

= FU (x)
n [where U ∼ Unif(0, 1)]

So the CDF of Z is

FZ(x) =


0 x < 0

xn 0 ≤ x ≤ 1

1 x > 1

To find the PDF, we take the derivative of each part of the CDF, which gives us the following

fZ(x) =

{
n xn−1 0 ≤ x ≤ 1

0 otherwise

5. Batteries and exponential distributions
Let X1, X2 be independent exponential random variables, where Xi has parameter λi, for 1 ≤ i ≤ 2. Let
Y = min(X1, X2).

(a) Show that Y is an exponential random variable with parameter λ = λ1 + λ2. Hint: Start by computing
P(Y > y). Two random variables with the same CDF have the same pdf. Why?

Solution:
We start with computing P(Y > y), by substituting in the definition of Y .

P(Y > y) = P(min{X1, X2} > y)

The probability that the minimum of two values is above a value is the chance that both of them are
above that value. From there, we can separate them further because X1 and X2 are independent.

P(X1 > y ∩X2 > y) = P(X1 > y)P(X2 > y) = e−λ1ye−λ2y
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= e−(λ1+λ2)y = e−λy

So FY (y) = 1 − P(Y > y) = 1 − e−λy and fY (y) = λe−λy so Y ∼ Exp(λ), since this is the same CDF
and PDF as an exponential distribution with parameter λ = λ1 + λ2.

(b) What is Pr(X1 < X2)? (Use the law of total probability.) The law of total probability hasn’t been
covered in class yet, but will be soon at which point it would be good to revisit this problem!

Solution:
By the law of total probability,

P(X1 < X2) =

∫ ∞

0
P(X1 < X2|X1 = x)fX1(x)dx =

∫ ∞

0
P(X2 > x)λ1e

−λ1xdx =

∫ ∞

0
e−λ2xλ1e

−λ1xdx =
λ1

λ1 + λ2

(c) You have a digital camera that requires two batteries to operate. You purchase n batteries, labelled
1, 2, . . . , n, each of which has a lifetime that is exponentially distributed with parameter λ, independently
of all other batteries. Initially, you install batteries 1 and 2. Each time a battery fails, you replace it with
the lowest-numbered unused battery. At the end of this process, you will be left with just one working
battery. What is the expected total time until the end of the process? Justify your answer.

Solution:
Let T be the time until the end of the process. We are trying to find E[T ]. T = Y1 + ...+ Yn−1 where Yi
is the time until we have to replace a battery from the ith pair. The reason it there are only n− 1 RVs in
the sum is because there are n − 1 times where we have two batteries and wait for one to fail. By part
(a), the time for one to fail is the min of exponentials, so Yi ∼ Exp(2λ). Hence the expected time for
the first battery to fail is 1

2λ . By linearity and memorylessness, E[T ] =
∑n−1

i=1 E[Y1] =
n−1
2λ .

(d) In the scenario of the previous part, what is the probability that battery i is the last remaining battery as
a function of i? (You might want to use the memoryless property of the exponential distribution that has
been discussed.)

Solution:
If there are two batteries i, j in the flashlight, by part (b), the probability each outlasts each other is
1/2. Hence, the last battery n has probability 1/2 of being the last one remaining. The second to last
battery n − 1 has to beat out the previous battery and the nth, so the probability it lasts the longest is
(1/2)2 = 1/4. Work down inductively to get that the probability the ith is the last remaining is (1/2)n−i+1

for i ≥ 3. Finally the first two batteries share the remaining probability as they start at the same time,
with probability (1/2)n−1 each.

6. Continuous joint density I
The joint probability density function of X and Y is given by

fX,Y (x, y) =

{
6
7

(
x2 + xy

2

)
0 < x < 1, 0 < y < 2

0 otherwise.

(a) Verify that this is indeed a joint density function.

(b) Compute the marginal density function of X.
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(c) Find Pr(X > Y ). (Uses the continuous law of total probability which we have not covered in class as of
11/17.)

(d) Find P (Y > 1
2 |X < 1

2).

(e) Find E(X).

(f) Find E(Y )

Solution:
(a) A joint density function will integrate to 1 over all possible values. Thus, we integrate over the joint range

range using Wolfram Alpha, and see that:∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy =

∫ 2

0

∫ 1

0

6

7
(x2 +

xy

2
)dxdy = 1

We also need to check that the density is nonnegative, but that is easily seen to be true.

(b) We apply the definition of the marginal density function of X, using the fact that we only need to integrate
over the values where the joint density is positive:

fX(x) =

{∫ 2
0

6
7(x

2 + xy
2 )dy = 6

7x(2x+ 1) 0 < x < 1

0 otherwise.

(c) First, we rearrange our initial probability. Then, by the continuous law of total probability:

P(X > Y ) = 1− P(X ≤ Y ) = 1−
∫ ∞

−∞
P(X ≤ Y |Y = y)fY (y)dy = 1−

∫ ∞

−∞
P(X ≤ y)fY (y)dy

Once again, we can instead integrate over just the range of y, getting:

1−
∫ 2

0
P(X ≤ y)fY (y)dy

We have to remember that fX(x) is positive only when 0 < x < 1. Thus, FX(x) = 1 for x ≥ 1, so we
have:

1−
∫ 1

0
P(X ≤ y)fY (y)dy −

∫ 2

1
fY (y)dy

So, now we just need to find the CDF of X, and the marginal PDF of Y . For the former, for any
0 < x < 1, we have

FX(x) =

∫ x

0

6

7
u(2u+ 1)du =

1

7
x2(4x+ 3)

For the latter, for 0 < y < 2, we have

fY (y) =

∫ 1

0

6

7
(x2 +

xy

2
)dx =

1

14
(3y + 4)

Putting these together, we get that:

P(X > Y ) = 1−
∫ 1

0

1

7
y2(4y+ 3)

1

14
(3y+ 4)dy−

∫ 2

1

1

14
(3y+ 4)dy = 1− 253

1960
− 17

28
=

517

1960
= 0.2638
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(d) By the definition of conditional probability:

P
(
Y >

1

2
|X <

1

2

)
=

P(Y > 1
2 , X < 1

2)

P(X < 1
2)

For the numerator, we have

P(Y >
1

2
, X <

1

2
) =

∫ ∞

1/2

∫ 1/2

−∞
fX,Y (x, y)dxdy

=

∫ 2

1/2

∫ 1/2

0

6

7

(
x2 +

xy

2

)
dxdy =

69

448

For the denominator, we can integrate using the marginal distribution that we found before:∫ 1/2

0

6

7
x(2x+ 1)dx =

5

28

Putting these together, we get:

P(Y >
1

2
|X <

1

2
) =

69
448
5
28

= 0.8625

(e) By definition, and using ΩX = (0, 1):

E[X] =

∫ 1

0
fX(x)xdx =

∫ 1

0

6

7
x(2x+ 1)xdx =

5

7

(f) By definition, and using ΩY = (0, 2):

E[Y ] =

∫ 2

0
fY (y)ydy =

∫ 2

0

1

14
(3y + 4)ydy =

8

7

7. Continuous joint density II
The joint density of X and Y is given by

fX,Y (x, y) =

{
xe−(x+y) x > 0, y > 0

0 otherwise.

and the joint density of W and V is given by

fW,V (w, v) =

{
2 0 < w < v, 0 < v < 1

0 otherwise.

Are X and Y independent? Are W and V independent?
Solution:
For two random variables X,Y to be independent, we must have fX,Y (x, y) = fX(x)fY (y) for all x ∈ ΩX , y ∈
ΩX . Let’s start with X and Y by finding their marginal PDFs. By definition, and using the fact that the joint
PDF is 0 outside of y > 0, we get:

fX(x) =

∫ ∞

0
xe−(x+y)dy = e−xx
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We do the same to get the PDF of Y , again over the range x > 0:

fY (y) =

∫ ∞

0
xe−(x+y)dx = e−y

Since e−xx · e−y = xe−x−y = xe−(x+y) for all x, y > 0, X and Y are independent.

We can see that W and V are not independent simply by observing that ΩW = (0, 1) and ΩV = (0, 1), but
ΩW,V is not equal to their Cartesian product. Specifically, looking at their range of fW,V (w, v). Graphing it with
w as the "x-axis" and v as the "y-axis", we see that The shaded area is where the joint pdf is strictly positive.
Looking at it, we can see that it is not rectangular, and therefore it is not the case that ΩW,V = ΩW×ΩV .
Remember, the joint range being the Cartesian product of the marginal ranges is not sufficient for independence,
but it is necessary. Therefore, this is enough to show that they are not independent.

8. Variance of the geometric distribution
Independent trials each resulting in a success with probability p are successively performed. Let N be the time
of the first success. Find the variance of N .
Solution:
Let Y = 1 if the first trial results in a success and Y = 0 otherwise. Now

Var(N) = E[N2]− (E[N ])2

To calculate E[N2], we condition on Y as follows:

E[N2] = E[E[N2|Y ]]

However,
E[N2|Y = 1] = 1

E[N2|Y = 0] = E[(1 +N)2]

These two equations follow because, if the first trial results in a success, then clearly N = 1 and so N2 = 1. On
the other hand, if the first trial results in a failure, then the total number of trials necessary for the first success
will have the same distribution as one (the first trial that results in failure) plus the necessary number of additional
trials. Since the latter quantity has the same distribution as N , we obtain that E[N2|Y = 0] = E[(1 + N)2].
Hence we see that

E[N2] = E[N2|Y = 1]P(Y = 1) + E[N2|Y = 0]P(Y = 0)

= p+ (1− p)E[(1 +N)2]

= 1 + (1− p)E[2N +N2]

Since we know that the expectation of a geometric random variable is given as E[N ] = 1
p , by the Linearity of

Expectation, we then have that

E[N2] = 1 + 2(1− p)E[N ] + (1− p)E[N2]

= 1 +
2(1− p)

p
+ (1− p)E[N2]

E[N2]− (1− p)E[N2] =
2− p

p

E[N2] =
2− p

p2
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Therefore,
Var(N) = E[N2]− (E[N ])2

=
2− p

p2
− 1

p2

=
1− p

p2

9. 3 points on a line
(This problem uses the continuous law of total probability which has not yet be covered in class.) Three points
X1, X2, X3 are selected at random on a line L (continuous independent uniform distributions). What is the
probability that X2 lies between X1 and X3?
Solution:
Let X1, X2, X3 ∼ Unif(0, 1).

P(X1 < X2 < X3) =

∫ ∞

−∞
P(X1 < X2 < X3 | X2 = x) fX2(x) dx Continuous LoTP

=

∫ ∞

−∞
P(X1 < x,X3 > x) fX2(x) dx Independence of X1, X2, X3

=

∫ ∞

−∞
P(X1 < x) P(x < X3) fX2(x) dx Independence of X1, X3

=

∫ ∞

−∞
FX1(x) (1− FX3(x)) fX2(x) dx

=

∫ 1

0
x (1− x) 1 dx

=
x2

2
− x3

3

∣∣∣∣1
0

=
1

6

10. In between
(Covers ideas that have not been covered in class.) Suppose that X1 and X2 are discrete uniform random
variables in {1, . . . , 2n} (i.e., X1 and X2 are equally likely to take any of the values 1, . . . , 2n) and let Y =
min(X1, X2). What is the conditional pmf pY |X1

(y | x1) and conditional CDF FY |X1
(y | x1). What is

E[Y | X1 = x1]? (For the definitions of conditional pmf, conditional CDF, see the review at the top of this
worksheet.)
Solution:
The conditional pmf is

pY |X1
(y | x1) = P(min(X1, X2) = y | X1 = x1) =

P(min(X1, X2) = y,X1 = x1)

P(X1 = x1)
=


0 if y > x1

1− x1−1
2n if y = x1

1
2n if 1 ≤ y < x1

Explanation:

• Since min(X1, X2) ≤ X1, if y > x1, then we have
P(min(X1, X2) = y,X1 = x1) = 0

• When y = x1, we have

P(min(X1, X2) = x1 | X1 = x1) = P(X2 ≥ x1 | X1 = x1) = P(X2 ≥ x1) =
2n− x1 + 1

2n
= 1− x1 − 1

2n

The second to last equality holds because X1 and X2 are independent.
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• In the case where y < x1, min(X1, X2) = X2. So for y < x1,

P(Y = y | X1 = x1) = P(X2 = y | X1 = x1) = P(X2 = y) =
1

2n
.

Again, we used the independence of X1 and X2.

The conditional CDF can be computed as follows

FY |X1
(y | x1) =

y∑
i=1

pY |X1
(i | x1) =


0 if y < 0
y
2n if y < x1

1 if y ≥ x1

The expected value can be computed as follows:

E[Y | X1 = x1] =

2n∑
y=1

y pY |X1
(y | x1) =

x1−1∑
y=1

y
1

2n
+

x1∑
y=x1

y

(
1− y − 1

2n

)
=

1

2n

x1−1∑
y=1

y + x1

(
1− x1 − 1

2n

)

11. Tail bounds
Suppose X ∼ Binomial(6, 0.4). We will bound P(X ≥ 4) using the tail bounds we’ve learned, and compare this
to the true result.

(a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?

(b) Give an upper bound for this probability using Chebyshev’s inequality. You may have to rearrange alge-
braically and it may result in a weaker bound.

(c) Give an upper bound for this probability using the Chernoff bound.

(d) Give the exact probability.

Solution:
(a) We know that the expected value of a binomial distribution is np, so: P(X ≥ 4) ≤ E[X]

4 = 2.4
4 = 0.6. We

can use it since X is nonnegative.
P(X ≥ 4) = P(X − 2.4 ≥ 1.6) ≤ P(|X − 2.4| ≥ 1.6) we can add those absolute value signs because that
only adds more possible values, so it is an upper bound on the probability of X − 2.4 ≥ 1.6. Then, using
Chebyshev’s inequality we get:
P(|X − 2.4| ≥ 1.6) ≤ V ar(X)

1.62
= 1.44

1.62
= 0.5625

(b) P(X ≥ 4) = P(X ≥ (1 + 2
3)2.4) ≤ e−( 2

3
)2E[X]/4 = e−4×2.4/36 ≈ 0.77

(c) Since X is a binomial, we know it has a range from 0 to n (or in this case 0 to 6). Thus, the possible
values to satisfy X ≥ 4 are 4, 5, or 6. We plug in the PMF for each to get: P(X ≥ 4) = P(X =
4) + P(X = 5) + P(X = 6) =

(
6
4

)
(0.4)4(0.6)2 +

(
6
5

)
(0.4)5(0.6) +

(
6
6

)
0.46 ≈ 0.1792

(d) By definition, and using ΩY = (0, 2):

E[Y ] =

∫ 2

0
fY (y)ydy =

∫ 2

0

1

14
(3y + 4)ydy =

8

7
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