
CSE 312: Foundations of Computing II
Section 6: The Normal RV and the CLT

1. Review of Main Concepts
(a) Discrete to Continuous:

Discrete Continuous
PMF/PDF pX(x) = P(X = x) fX(x) 6= P(X = x) = 0

CDF FX (x) =
∑

t≤x pX(t) FX (x) =
∫ x
−∞ fX (t) dt

Normalization
∑

x pX(x) = 1
∫∞
−∞ fX (x) dx = 1

Expectation E[X] =
∑

x xpX(x) E[X] =
∫∞
−∞ xfX (x) dx

LOTUS E[g(X)] =
∑

x g(x)pX(x) E[g(X)] =
∫∞
−∞ g(x)fX (x) dx

(b) Multivariate: Discrete to Continuous:
Discrete Continuous

Joint PMF/PDF pX,Y (x, y) = P(X = x, Y = y) fX,Y (x, y) 6= P(X = x, Y = y)

Joint range/support
ΩX,Y {(x, y) ∈ ΩX × ΩY : pX,Y (x, y) > 0} {(x, y) ∈ ΩX × ΩY : fX,Y (x, y) > 0}
Joint CDF FX,Y (x, y) =

∑
t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =

∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E[g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)
must have ΩX,Y = ΩX × ΩY ΩX,Y = ΩX × ΩY

(c) Standardizing: Let X be any random variable (discrete or continuous, not necessarily normal), with
E[X] = µ and V ar(X) = σ2. If we let Y = X−µ

σ , then E[Y ] = 0 and V ar(Y ) = 1.

(d) Closure of the Normal Distribution: Let X ∼ N (µ, σ2). Then, aX + b ∼ N (aµ+ b, a2σ2). That is,
linear transformations of normal random variables are still normal.

(e) “Reproductive” Property of Normals: Let X1, . . . , Xn be independent normal random variables with
E[Xi] = µi and V ar(Xi) = σ2

i . Let a1, . . . , an∈ R and b∈ R. Then,

X =

n∑
i=1

(aiXi + b) ∼ N

(
n∑

i=1

(aiµi + b),

n∑
i=1

a2iσ
2
i

)

There’s nothing special about the parameters – the important result here is that the resulting random
variable is still normally distributed.

(f) Law of Total Probability (Continuous): A is an event, and X is a continuous random variable with
density function fX(x).

P(A) =

∫ ∞

−∞
P(A|X = x)fX(x)dx

(g) Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with E[Xi] = µ and V ar(Xi) =
σ2. Let X =

∑n
i=1Xi, which has E[X] = nµ and V ar(X) = nσ2. Let X = 1

n

∑n
i=1Xi, which has

E
[
X
]
= µ and V ar(X) = σ2

n . X is called the sample mean. Then, as n → ∞, X approaches the normal
distribution N

(
µ, σ

2

n

)
. Standardizing, this is equivalent to Y = X−µ

σ/
√
n

approaching N (0, 1). Similarly, as
n → ∞, X approaches N (nµ, nσ2) and Y ′ = X−nµ

σ
√
n

approaches N (0, 1).
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It is no surprise that X has mean µ and variance σ2/n – this can be done with simple calculations.
The importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is
approximately normally distributed with mean µ and variance σ2/n. Don’t forget the continuity correction,
only when X1, . . . , Xn are discrete random variables.

2. Zoo of Continuous Random Variables
(a) Uniform: X ∼ Uniform(a, b) iff X has the following probability density function:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

E[X] = a+b
2 and V ar(X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely.

(b) Exponential: X ∼ Exponential(λ) iff X has the following probability density function:

fX (x) =

{
λe−λx if x ≥ 0
0 otherwise

E[X] = 1
λ and V ar(X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event,
where λ > 0 is the average number of events per unit time. Note that the exponential measures how
much time passes until the next event (any real number, continuous), whereas the Poisson measures how
many events occur in a unit of time (nonnegative integer, discrete). The exponential random variable X
is memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P(X > t)

The geometric random variable also has this property.

(c) Normal (Gaussian, “bell curve”): X ∼ N (µ, σ2) iff X has the following probability density function:

fX (x) =
1

σ
√
2π

e−
1
2

(x−µ)2

σ2 , x ∈ R

E[X] = µ and V ar(X) = σ2. The “standard normal” random variable is typically denoted Z and has
mean 0 and variance 1: if X ∼ N (µ, σ2), then Z = X−µ

σ ∼ N (0, 1). The CDF has no closed form, but
we denote the CDF of the standard normal as Φ(z) = FZ (z) = P(Z ≤ z). Note from symmetry of the
probability density function about z = 0 that: Φ(−z) = 1− Φ(z).

3. Grading on a curve
In some classes (not CSE classes) an examination is regarded as being good (in the sense of determining a
valid spread for those taking it) if the test scores of those taking it are well approximated by a normal density
function. The instructor often uses the test scores to estimate the normal parameters µ and σ2 and then assigns
a letter grade of A to those whose test score is greater than µ + σ, B to those whose score is between µ and
µ+ σ, C to those whose score is between µ− σ and µ, D to those whose score is between µ− 2σ and µ− σ
and F to those getting a score below µ− 2σ. If the instructor does this and a student’s grade on the test really
is normally distributed with mean µ and variance σ2, what is the probability that student will get each of the
possible grades A,B,C,D and F?
Solution:
We can solve for each of these probabilities by standardizing the normal curve and then looking up each bound
in the Z-table. Let X be the students score on the test. Then we have

P(A) = P(X ≥ µ+ σ) = P
(
X − µ

σ
≥ 1

)
= 1− P

(
X − µ

σ
< 1

)
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By the closure properties of the normal random variable, X−µ
σ is distributed as a normal random variable with

mean 0 and variance 1. Since this is the standard normal, we can plug it into our Φ-table to get the following:

P(A) = 1− Φ(1) = 1− 0.84134 = 0.15866

The other probabilities can be found using a similar approach:

P(B) = P(µ < X < µ+ σ) = Φ(1)− Φ(0) = 0.34134

P(C) = P(µ− σ < X < µ) = Φ(0)− Φ(−1) = 0.34134

P(D) = P(µ− 2σ < X < µ− σ) = Φ(−1)− Φ(−2) = 0.13591

P(F ) = P(X < µ− 2σ) = Φ(−2) = 0.02275

4. Normal questions
(a) Let X be a normal random with parameters µ = 10 and σ2 = 36. Compute P(4 < X < 16).

Solution:
Let X−10

6 = Z. By the scale and shift properties of normal random variables Z ∼ N (0, 1).

P(4 < X < 16) = P
(
4− 10

6
<

X − 10

6
<

16− 10

6

)
= P(−1 < Z < 1) = Φ(1)− Φ(−1) = 0.68268

(b) Let X be a normal random variable with mean 5. If P(X > 9) = 0.2, approximately what is V ar(X)?

Solution:
Let σ2 = V ar(X). Then,

P(X > 9) = P
(
X − 5

σ
>

9− 5

σ

)
= 1− Φ

(
4

σ

)
= 0.2

So, Φ
(
4
σ

)
= 0.8. Looking up the phi values in reverse lets us undo the Φ function, and gives us 4

σ = 0.845.
Solving for σ we get σ ≈ 4.73, which means that the variance is about 22.4.

(c) Let X be a normal random variable with mean 12 and variance 4. Find the value of c such that

P(X > c) = 0.10.

Solution:

P(X > c) = P
(
X − 12

2
>

c− 12

2

)
= 1− Φ

(
c− 12

2

)
= 0.1

So, Φ
(
c−12
2

)
= 0.9. Looking up the phi values in reverse lets us undo the Φ function, and gives us

c−12
2 = 1.29. Solving for c we get c ≈ 14.58.
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5. Round-off error
Let X be the sum of 100 real numbers, and let Y be the same sum, but with each number rounded to the
nearest integer before summing. If the roundoff errors are independent and uniformly distributed between -0.5
and 0.5, what is the approximate probability that |X − Y | > 3?
Solution:
Let X =

∑100
i=1Xi, and Y =

∑100
i=1 r(Xi), where r(Xi) is Xi rounded to the nearest integer. Then, we have

X − Y =

100∑
i=1

Xi − r(Xi)

Note that each Xi − r(Xi) is simply the round off error, which is distributed as Unif(−0.5, 0.5). Since X − Y
is the sum of 100 i.i.d. random variables with mean µ = 0 and variance σ2 = 1

12 , X − Y ≈ W ∼ N (0, 10012 ) by
the Central Limit Theorem. For notational convenience let Z ∼ N (0, 1)

P(|X − Y | > 3) ≈ P(|W | > 3) [CLT]
= P(W > 3) + P(W < −3) [No overlap between W > 3 and W < −3]

= 2 P(W > 3) [Symmetry of normal]

= 2 P

(
W√
100/12

>
3√

100/12

)
≈ 2 P(Z > 1.039) [Standardize W ]

= 2 (1− Φ(1.039)) ≈ 0.29834

6. Tweets
A prolific Twitter user tweets approximately 350 tweets per week. Let’s assume for simplicity that the tweets
are independent, and each consists of a uniformly random number of characters between 10 and 140. (Note
that this is a discrete uniform distribution.) Thus, the central limit theorem (CLT) implies that the number
of characters tweeted by this user is approximately normal with an appropriate mean and variance. Assuming
this normal approximation is correct, estimate the probability that this user tweets between 26,000 and 27,000
characters in a particular week. (This is a case where continuity correction will make virtually no difference in
the answer, but you should still use it to get into the practice!).
Solution:
Let X be the total number of characters tweeted by a twitter user in a week. Let Xi ∼ Unif(10, 140) be the
number of characters in the ith tweet (since the start of the week). Since X is the sum of 350 i.i.d. rvs with
mean µ = 75 and variance σ2 = 1430, X ≈ N ∼ N (350 · 75, 350 · 1430). Thus,

P(26, 000 ≤ X ≤ 27, 000) ≈ P(25, 999.5 ≤ N ≤ 27, 000.5)

Standardizing this gives the following formula

P(25, 999.5 ≤ N ≤ 27, 000.5) ≈ P
(
−0.3541 ≤ N − 350 · 75√

350 · 1430
≤ 1.0608

)
= P (−0.3541 ≤ Z ≤ 1.0608)

= Φ(1.0608)− Φ(−0.3541)

≈ 0.4923

So the probability that this user tweets between 26,000 and 27,000 characters in a particular week is approxi-
mately 0.4923.
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7. Bad Computer
Each day, the probability your computer crashes is 10%, independent of every other day. Suppose we want to
evaluate the computer’s performance over the next 100 days.

(a) Let X be the number of crash-free days in the next 100 days. What distribution does X have? Identify
E[X] and V ar(X) as well. Write an exact (possibly unsimplified) expression for P(X ≥ 87).

Solution:
Since X counts the number of crash-free days (successes) in 100 days (trials), where each trial is a success
with probability 0.9, we can see that X is binomial with n = 100 and p = 0.9, or X ∼ Binomial(100, 0.9).
Hence, E[X] = np = 90 and V ar(X) = np(1− p) = 9. Finally,

P(X ≥ 87) =
100∑
k=87

(
100

k

)
(0.9)k(1− 0.9)100−k

(b) Approximate the probability of at least 87 crash-free days out of the next 100 days using the Central Limit
Theorem. Use continuity correction.
Important: continuity correction says that if we are using the normal distribution to approximate

P(a ≤
n∑

i=1

Xi ≤ b)

where a ≤ b are integers and the Xi’s are i.i.d. discrete random variables, then, as our approximation,
we should use

P(a− 0.5 ≤ Y ≤ b+ 0.5)

where Y is the appropriate normal distribution that
∑n

i=1Xi converges to by the Central Limit Theorem.1

For more details see pages 209-210 in the book.

Solution:
From the previous part, we know that E[X] = 90 and V ar(X) = 9.

P(X ≥ 87) = P(86.5 < X < 100.5) = P(
86.5− 90

3
<

X − 90

3
<

100.5− 90

3
)

≈ P(−1.17 <
X − 90

3
< 3.5) ≈ Φ(3.5) + Φ(1.17)− 1 ≈ 0.9998 + 0.8790− 1 = 0.8788

Notice that, if you had used 86.5 < X in place of 86.5 < X < 100.5, your answer would have been nearly
the same, because Φ(3.5) is so close to 1.

8. Transformations
This has not been covered in class yet and probably won’t be. But if you’re interested, please read
Section 4.4.
Suppose X ∼ Uniform(0, 1) has the continuous uniform distribution on (0, 1). Let Y = − 1

λ logX for some
λ > 0.

(a) What is ΩY ?
1

The intuition here is that, to avoid a mismatch between discrete distributions (whose range is a set of integers) and continuous
distributions, we get a better approximation by imagining that a discrete random variable, say W , is a continuous distribution with
density function

fW (x) := pW (i) when i− 0.5 ≤ x < i+ 0.5 and i integer
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Solution:
ΩY = (0,∞) because log(x) ∈ (−∞, 0) for x ∈ (0, 1). Thus, that range times a necessarily negative
number − 1

λ , will result in a range from 0 to positive infinity.

(b) First write down FX(x) for x ∈ (0, 1). Then, find FY (y) on ΩY .

Solution:
FX(x) = x for x ∈ (0, 1) because that is the CDF of the continuous uniform distribution. We find the
CDF of Y by plugging in the given definition of Y and getting into a form where we can use the CDF of
X. Let y ∈ ΩY .

FY (y) = P(Y ≤ y) = P(− 1

λ
logX ≤ y) = P(logX ≥ −λy) = P(X ≥ e−λy) = 1− P(X < e−λy)

Then, because e−λy ∈ (0, 1)
= 1− FX(e−λy) = 1− e−λy

(c) Now find fY (y) on ΩY (by differentiating FY (y) with respect to y. What distribution does Y have?

Solution:

fY (y) = F ′
Y (y) = λe−λy

Hence, Y ∼ Exponential(λ).

9. Convolutions
This has not been covered in class. We’re not yet sure if we will have time for it, but if you’re
interested, please read Section 5.5.
Suppose Z = X + Y , where X⊥Y . (⊥ is the symbol for independence. In other words, X and Y are
independent. ) Z is called the convolution of two random variables. If X,Y, Z are discrete,

pZ (z) = P(X + Y = z) =
∑
x

P(X = x ∩ Y = z − x) =
∑
x

pX (x) pY (z − x)

If X,Y, Z are continuous,

FZ (z) = P(X + Y ≤ z) =

∫ ∞

−∞
P(Y ≤ z −X|X = x)fX(x)dx =

∫ ∞

−∞
FY (z − x)fX(x)dx

Suppose X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2).

(a) Find an expression for P(X1 < 2X2) using a similar idea to convolution, in terms of FX1 , FX2 , fX1 , fX2.
(Your answer will be in the form of a single integral, and requires no calculations – do not evaluate it).

Solution:
We use the continuous version of the “Law of Total Probability” to integrate over all possible values of
X2. Take the probability that X1 < 2X2 given that value of X2, times the density of X2 at that value.

P(X1 < 2X2) =

∫ ∞

−∞
P(X1 < 2X2|X2 = x2)fX2(x2)dx2 =

∫ ∞

−∞
FX1 (2x2) fX2 (x2) dx2

(b) Find s, where Φ(s) = P(X1 < 2X2) using the fact that linear combinations of independent normal
random variables are still normal.
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Solution:
Let X3 = X1 − 2X2, so that X3 ∼ N (µ1 − 2µ2, σ

2
1 + 4σ2

2) (by the reproductive property of normal
distributions)

P(X1 < 2X2) = P(X1 − 2X2 < 0) = P(X3 < 0) = P(
X3 − (µ1 − 2µ2)√

σ2
1 + 4σ2

2

<
0− (µ1 − 2µ2)√

σ2
1 + 4σ2

2

)

= P(Z <
2µ2 − µ1√
σ2
1 + 4σ2

2

) = Φ

(
2µ2 − µ1√
σ2
1 + 4σ2

2

)
→ s =

2µ2 − µ1√
σ2
1 + 4σ2

2
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