
CSE 312: Foundations of Computing II
Section 8: Maximum Likelihood and more Solutions

1. Review of Main Concepts
(a) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

(b) Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX(x ; θ) (if X discrete) or
density fX(x ; θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.
If X is discrete:

L (x1, . . . , xn | θ) =
n∏

i=1

pX (xi | θ)

If X is continuous:
L (x1, . . . , xn | θ) =

n∏
i=1

fX (xi | θ)

(c) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

lnL (x1, . . . , xn | θ)

(d) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since
the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly
the same as the value that maximizes the log-likelihood.
If X is discrete:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln pX (xi | θ)

If X is continuous:
lnL (x1, . . . , xn | θ) =

n∑
i=1

ln fX (xi | θ)

(e) Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ

)
= E[θ̂]−θ. An estimator

θ̂ of θ is unbiased iff Bias
(
θ̂, θ

)
= 0, or equivalently E[θ̂] = θ.

(f) Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.
(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.
(c) Take the second derivative and show that θ̂ indeed is a maximizer, that ∂2L

∂θ2
< 0 at θ̂. Also ensure

that it is the global maximizer: check points of non-differentiability and boundary values.

(g) Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤ E[X]
α .

(h) Chebyshev’s Inequality (we did not cover this in class): Suppose Y is a random variable with E[Y ] = µ

and Var(Y ) = σ2. Then, for any α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2 .
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(i) Chernoff Bound (for the Binomial): (We will not cover this in class, but it’s good to know.) It’s
stronger than the Chebyshev bound. Suppose X ∼ Binomial(n, p) and µ = np. Then, for any 0 < δ < 1,

• P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
3

• P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2

2. 312 Grades
Suppose Professor Karlin loses everyones grades for 312 and decides to make it up by assigning grades randomly
according to the following probability distribution, and hoping the n students wont notice: give an A with
probability 0.5, a B with probability θ, a C with probability 2θ, and an F with probability 0.5−3θ. Each student
is assigned a grade independently. Let xA be the number of people who received an A, xB the number of people
who received a B, etc, where xA + xB + xC + xF = n. Find the MLE for θ.
Solution:
The data tells us, for each student in the class, what their grade was. We begin by computing the likelihood
of seeing the given data given our parameter θ. Because each student is assigned a grade independently, the
likelihood is equal to the product over students of the chance they got the particular grade they got, which
gives us:

L(x|θ) = 0.5xAθxB (2θ)xC (0.5− 3θ)xF

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0,
and solve for θ̂.

lnL(x|θ) = xA ln(0.5) + xB ln(θ) + xC ln(2θ) + xF ln(0.5− 3θ)

∂

∂θ
lnL(x|θ) = xB

θ
+

xC
θ

− 3xF
0.5− 3θ

= 0

Solving yields θ̂ = xB+xC
6(xB+xC+xF ) .

3. A Red Poisson
Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. Find the
MLE of θ.
Solution:
Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution
multiplied together for every xi. From there, take the log-likelihood, then the first derivative, set it equal to 0
and solve for for θ̂.

L (x1, . . . , xn | θ) =
n∏

i=1

e−θ θ
xi

xi!

lnL (x1, . . . , xn | θ) =

n∑
i=1

[−θ − ln(xi!) + xi ln(θ)]

∂

∂θ
lnL (x1, . . . , xn | θ) =

n∑
i=1

[
−1 +

xi
θ

]
= 0

−n+
Σn
i=1xi

θ̂
= 0

θ̂ =
Σn
i=1xi
n
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4. Independent Shreds, You Say?
(Covered in class.) You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(θ), where θ is
unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the
distribution’s parameter θ. Give all answers to 3 significant digits.

(a) What is the maximum likelihood estimator θ̂ of θ?

Solution:
Note that Σi∈[n]xi = 30, as given in the problem spec. Therefore, there are 30 1s and 70 0s. (Note that
they come in some specific order.) Therefore, we can setup L as follows, because there is a θ chance of
getting a 1, and a (1−θ) chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood,
then the first derivative, set it equal to 0 and solve for for θ̂.

L (x1, . . . , xn | θ) = (1− θ)70θ30

lnL (x1, . . . , xn | θ) = 70 ln (1− θ) + 30 ln θ

∂

∂θ
lnL (x1, . . . , xn | θ) = − 70

1− θ
+

30

θ
= 0

30

θ̂
=

70

1− θ̂

30− 30θ̂ = 70θ̂

θ̂ =
30

100

(b) Is θ̂ an unbiased estimator of θ?

Solution:
An estimator is unbiased if the expectation of the estimator is equal to the original parameter, i.e.:
E[θ̂] = θ. Setting up the expectation of our estimator and plugging it in for the generic case, we get the
following, which we can then reduce with linearity of expectation:

E[θ̂] = E

[
1

100

100∑
i=1

Xi

]

=
1

100

100∑
i=1

E[Xi]

=
1

100
· 100θ = θ.

so it is unbiased.

5. Y Me?
Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY (y|θ) =
1

2θ
exp(−|y|

θ
)

.
Find the MLE for θ in terms of |yi| and n.
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Solution:
Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together.
From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for θ̂.

L (y1, . . . , yn | θ) =

n∏
i=1

1

2θ
exp(−|yi|

θ
)

lnL (y1, . . . , yn | θ) =

n∑
i=1

[
− ln 2− ln θ − |yi|

θ

]
∂

∂θ
lnL (y1, . . . , yn | θ) =

n∑
i=1

[
−1

θ
+

|yi|
θ2

]
= 0

−n

θ̂
+

Σn
i=1|yi|
θ̂2

= 0

θ̂ =
Σn
i=1|yi|
n

6. Laplace MLE
Suppose x1, . . . , x2n are iid realizations from the Laplace density (double exponential density): for x ∈ R,

fX (x | θ) = 1

2
e−|x−θ|

Find the MLE for θ. For this problem, you need not verify that the MLE is indeed a maximizer. You may find
the sign function useful:

sgn (x) =

{
+1, x ≥ 0
−1, x < 0

Solution:
We begin by setting up the likelihood like we do in any case. Since these are i.i.d. realizations, we can multiply
all their PDFs together. From there, take the log-likelihood, then the first derivative, where we notice that the
derivative of − ln 2− |xi − θ| is just the sign function of xi − θ. Then, set that equal to 0 and solve for for θ̂.

L (x1, . . . , x2n | θ) =
2n∏
i=1

1

2
e−|xi−θ|

lnL (x1, . . . , x2n | θ) =

2n∑
i=1

[− ln 2− |xi − θ|]

∂

∂θ
lnL (x1, . . . , x2n | θ) =

2n∑
i=1

sgn (xi − θ) = 0

θ̂ = any value in [x
′
n, x

′
n+1]

where x
′
i is the ith order statistic: the ith smallest observation (see 5.10 in the textbook for more details).

If you wanted to argue that this is a global maximizer, note that the log likelihood is the sum of concave
functions, so every critical point is a global maximizer.

7. What if we lose ?
[This is practice with earlier material] Suppose 59 percent of voters favor Proposition 600. Use the Normal
approximation to estimate the probability that a random sample of 100 voters will contain:

(a) at most 50 in favor. Mention any assumption that you make.
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Solution:
We will make an assumption here. We will assume that the ith person is in favor of the proposition with
probability 59

100 . We define Xi ∼ Bernoulli( 59
100) representing whether the ith person is in favor or not.

We define X =
∑100

i=1Xi representing the number of people who are in favor of the proposition. We can
approximate X by Y ∼ N(100 · 0.59, 100 · 0.242). We need to find P( Y−59√

(24.2)
< 50.5−59√

(24.2)
)(after continuity

correction and standardization) which is equal to Φ(−1.729).

(b) more than 100 voters in favor or fewer than 0 voters in favor (again based on this normal approximation).
Will the probability be non zero?

Solution:
We will use our normal approximation Y from part(a). We are interested in P(Y < −0.5) + P(Y >
100.5)(after continuity correction) which is the same as

P(
Y − 59√

24.2
<

−0.5− 59√
24.2

) + P(
Y − 59√

24.2
>

100.5− 59√
24.2

) = Φ(−12.09) + 1− Φ(8.436)

. Yes, the probability will be non -zero because the density of the normal distribution is non-zero every-
where. Note that this result is acceptable because the normal distribution is an approximation.

8. Law of Total Probability Review
(a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one

of ΩU = {0, 1
n ,

2
n , ..., 1} (notice this set has size n + 1). Let H be the event that the coin comes up

heads. What is P(H)?

Solution:
We can use the law of total probability, conditioning on U = k

n for k = 0, ..., n. Note that the probability
of getting heads conditioning on a fixed U value is U , and that the probability of U taking on any value
in its range is 1

n+1 since it is discretely uniform.

P(H) =
n∑

k=0

P(H|U =
k

n
)P(U =

k

n
) =

n∑
k=0

k

n
· 1

n+ 1
=

1

n(n+ 1)

n∑
k=0

k =
1

n(n+ 1)

n(n+ 1)

2
=

1

2

(b) (Continuous version) Now suppose U ∼ Uniform(0,1) has the continuous uniform distribution over the
interval [0, 1]. What is P(H)?

Solution:
We do the same thing, this time using the continuous law of total probability. Note, this time, that we’re
conditioning on U = u and taking the integral with respect to u, and that the density of U for any value
in its range is 1 because it is uniformly random.

P(H) =

∫ ∞

−∞
P(H|U = u)fU (u)du

We can take the integral from 0 to 1 instead because outside of that range the density of U is 0.

=

∫ 1

0
P(H|U = u)fU (u)du =

∫ 1

0
u · 1du =

1

2
[u2]10 =

1

2

(c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fX(x). Write an expression for P(E), conditioning on X.
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Solution:
We use the continuous law of total probability again, this time not deriving it any further and sticking
with negative infinity to infinity because we don’t know the range of the RV X.

P(E) =

∫ ∞

−∞
P(E|X = x)fX(x)dx

9. MAP Estimation*
(Optional: depending on if we have covered this in lecture; Read sections 7.4 and 7.5, if you’re interested) Let
x1, ..., xn be iid realizations from a distribution with common pmf pX(x; θ) where θ is an unknown but fixed
parameter. Let’s call the event {X1 = x1, ..., Xn = xn} = D for data. You may wonder why in MLE, we seek
to maximize the likelihood L(D | θ), rather than P(θ | D). This is because it doesn’t make sense to compute
P(θ), since θ is fixed. However, in Maximum a Posteriori (MAP) estimation, we assume the parameter
is a random variable (denoted Θ), and attempt to maximize πΘ(θ | D), where πΘ is the pmf or pdf of Θ,
depending on whether Θ is continuous or discrete. Using Bayes Theorem, we get πΘ(θ | D) = L(D|θ)πΘ(θ)

L(D) .
To maximize the LHS with respect to θ, we may ignore the denominator on the RHS since it is constant with
respect to θ. Hence MAP seeks to maximize πΘ(θ | D) ∝ L(D | θ)πΘ(θ). We call πΘ(θ) the prior distribution
on the parameter Θ, and πΘ(θ | D) the posterior distribution on Θ. MLE maximizes the likelihood, and MAP
maximizes the product of the likelihood and the prior. If the prior is uniform, we will see that MAP is the same
as MLE (since πΘ(θ) won’t depend on θ).

(a) Suppose we have the samples x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0 from the Bernoulli(θ) distribution,
where θ is unknown. Assume θ is unrestricted; that is, θ ∈ (0, 1). What is θ̂MLE?

Solution:
We begin with finding the likelihood by multiplying the probabilities of seeing each of the independent
realizations from the Ber(θ) distribution. From there, we just use the MLE process to get the log-likelihood,
take the first derivative, set it equal to 0, and solve for ˆθMLE .

L (x1, . . . , x5 | θ) = θ2(1− θ)3

lnL (x1, . . . , x5 | θ) = 2 ln(θ) + 3 ln(1− θ)

∂

∂θ
lnL (x1, . . . , x5 | θ) =

2

θ
− 3

1− θ
= 0

2− 2θ = 3θ

θ̂MLE =
2

5

(b) Suppose we impose that θ ∈ {0.2, 0.5, 0.7}. What is θ̂MLE?

Solution:
We can compute L(D | θ) for each value of θ, and take the largest.
L(D | 0.2) = (1− 0.2)3(0.2)2 = 0.02048

L(D | 0.5) = (1− 0.5)3(0.5)2 = 0.03125

L(D | 0.7) = (1− 0.7)3(0.7)2 = 0.01323

So θ̂MLE = 0.5 .

(c) Assume Θ is restricted as in part (b) (now a random variable for MAP). Assume a (discrete) prior of
πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, πΘ(0.7) = 0.89. What is θ̂MAP ?
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Solution:
We compute the objective to maximize for MAP:
πΘ(0.2 | D) ∝ L(D | 0.2)πΘ(0.2) = 0.02048 · 0.1 = 0.002048

πΘ(0.5 | D) ∝ L(D | 0.5)πΘ(0.5) = 0.03125 · 0.01 = 0.0003125

πΘ(0.7 | D) ∝ L(D | 0.7)πΘ(0.7) = 0.01323 · 0.89 = 0.0117747

Hence θ̂MAP = 0.7 .

(d) Show that we can make the MAP estimator whatever we want it to be. That is, for each of the three
candidate parameters above, find a prior distribution on Θ such that the MAP estimate is that parameter.

Solution:
Just assign a prior of 1 to the desired parameter. If you don’t want something degenerate, assign a prior
extremely close to 1, and give uniform probability to the other parameters.

(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get any value
θ ∈ (0, 1) (not just ones in a finite set such as {0.2, 0.5, 0.7}). So we assign θ the Beta distribution with
parameters α, β > 0 and density πΘ(θ) = cθα−1(1−θ)β−1 for θ ∈ (0, 1) and 0 otherwise as a prior, where c
is a normalizing constant which has a complicated form. The mode of a W ∼ Beta(α, β) random variable
is given as α−1

α+β−2 (the mode is the value with the highest density = argmaxw∈(0,1) fW (w)). Suppose
x1, ..., xn are iid samples from the Bernoulli distribution with unknown parameter, where

∑n
i=1 xi = k.

Recall that the MLE is k/n. Show that the posterior πΘ(θ | D) has a Beta(k + α, n − k + β) density,
and find the MAP estimator for Θ. (Hint: use the mode given). Notice that Beta(1, 1) ≡ Uniform(0, 1).
If we had this prior, how would the MLE and MAP estimates compare?

Solution:
We want to maximize πΘ(θ | D) ∝ L(D | θ)πΘ(θ) ∝

(
θk(1− θ)n−k

) (
θα−1(1− θ)β−1

)
= θ(k+α)−1(1 −

θ)(n−k+β)−1. Hence the posterior ∼ Beta(k + α, n − k + β). We are given the mode of any beta

distribution, so our estimate is θ̂MAP =
k + α− 1

n+ α+ β − 2
. If α = β = 1, then this is exactly the MLE,

and Beta(1, 1) ≡ Uniform(0, 1), so having a uniform prior causes the MLE to equal the MAP estimate.

(f) Since the posterior is also a Beta distribution, we call the Beta distribution the conjugate prior to the
Bernoulli/Binomial distribution. Intepret what the parameters α, β mean as to the prior.

Solution:
α − 1 is the number of heads you pretend to see beforehand, and β − 1 is the number of tails you
pretend to see beforehand. Why is this? Because our MLE was k

n (heads/trials), and the MAP estimate
is k+α−1

n+(α+β−2) =
k+(α−1)

n+(α−1)+(β−1) . Hence we add α+β−2 “fake" trials, α−1 which are heads (numerator),
and the other β − 1 which are tails. This should look familiar as our estimates for P(word | spam) and
P(word | ham) with a Beta(2, 2) prior when we did smoothing for Naive Bayes.

(g) Which do you think is “better", MLE or MAP?

Solution:
There is no right answer. There are two main schools in statistics: Bayesians and Frequentists. Frequen-
tists prefer MLE since they don’t believe you should be putting a prior belief on anything, and you should
only make judgment based on what you’ve seen. They believe the parameter being estimated is a fixed
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quantity. On the other hand, Bayesians prefer MAP, since they can incorporate their prior knowledge into
the estimation. Hence the parameter being estimated is a random variable, and we seek the mode - the
value with the highest probability or density. An example would be estimating the probability of heads of
a coin - is it reasonable to assume it is more likely fair than not? If so, what distribution should we put
on the parameter space?
Anyway, in the long run, the prior “washes out", and the only thing that matters is the likelihood; the
observed data. For small sample sizes like this, the prior significantly influences the MAP estimate.
However, as the number of samples goes to infinity, the MAP and MLE are equal.
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