CSE 312

Foundations of Computing II

Lecture 2: Counting II

1.2

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Recap
- k-Permutations
- Combinations
- Multinomial Coefficients
- Stars and Bars
- How to Answer a Question

Quick Summary

- Sum Rule If you can choose from

- Either one of n options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is $n+m$
- Product Rule

In a sequential process, if there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), ..., and
- $\quad n_{k}$ choices for the $k^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{k}$

Quick Summary

$n \cdot(n-1) \cdot \ldots \beth=n!$

- Permutations: How many ways to order n distinct items?
- Product rule $\rightarrow \mathrm{n}$!
- Complementary Counting: Instead of counting $|\mathrm{S}|$, count $|\mathrm{U}|-|\mathrm{U} / \mathrm{S}|$

Agenda

- Recap
- k-Permutations
- Combinations
- Multinomial Coefficients
- Stars and Bars
- How to Answer a Question

Distinct Letters

$$
26 \cdot 26 \cdot 26 \cdot 26 \cdot 26
$$

"How many sequences of 5 distinct alphabet letters from $\{A, B, \ldots, Z\}$?"
E.g., AZURE, BINGO, TANGO. But not: STENA, SARAH ABIDE

$$
26 \times 25 \times 24 \times 23 \times 22
$$

A...

Distinct Letters

"How many sequences of 5 distinct alphabet letters from $\{A, B, \ldots, Z\}$?"
E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: $26 \times 25 \times 24 \times 23 \times 22=$ 7893600

In general

Aka: $\underline{k-p e r m u t a t i o n s ~} \frac{26!}{(0)!}=26!$

Fact. \# of ways to arrange k out of n distinct objects in a sequence.
$P(n, k)=n \times(n-1) \times \cdots \times(n-k+1)$

$726 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 2+\cdot 25 \cdots \rightarrow 1 n=26$
$21-20 \cdot 59 \cdot 101$
We say " n pick k "
26
26
$=\frac{n!}{(n-k)!}$
$26!$

$$
k=5
$$

$$
21 .
$$

Agenda

- Recap
- k-Permutations
- Combinations
- Multinomial Coefficients
- Stars and Bars
- How to Answer a Question

Number of Subsets

"How many size -5 subsets of $\{A, B, \ldots, Z\}$?' 3 AECR23
E.g., $\{A, Z, U, R, E\},\{B, I, N, G, O\},\{T, A, N, G, O\}$. But not: $\{S, T, E, V\},\{S, A, R, H\}, \ldots$

Number of Subsets

"How many size-5 subsets of $\{A, B, \ldots, Z\}$?"
E.g., $\{A, Z, U, R, E\},\{B, T, N, G, O\},\{T, A, N, G, O\}$. But not: $\{S, T, E, V\},\left\{S, A, R^{\prime}, H\right\}, \ldots$

Difference from k-permutations: NO ORDER Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG ... Same set: \{T,A,N,G,O\}, \{O,G,N,A,T\}, \{A,T,N,G,O\}, \{N,A,T,G,O\},\{O,N,A,T,G\}... ...

How to count number of 5 element subsets of $\{A, B, \ldots, Z\}$?

Consider the following process:

1. Choose an unordered subset $S \subseteq\{A, B, \ldots, Z\}$ of size $|S|=5 \rightleftarrows$ e.g. $S=\{A, G, N, O, T\}$
2. Choose a permutation of letters in S
e.g., TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...

Outcome: An ordered sequence of 5 distinct letters from $\{A, B, \ldots, Z\}$

Number of Subsets - Idea for how to count

Consider the following process:

1. Choose an unordered subset $S \subseteq\{A, B, \ldots, Z\}$ of

$$
\text { size }|S|=5 . \quad \text { e.g. } S=\{A, G, N, O, T\}
$$

1. Choose a permutation of letters in S e.g., TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...

Outcome: An ordered sequence of 5 distinct letters from $\{A, B, \ldots, Z\}$

Combinations

$$
\frac{n!}{(n-h)!}=P(n, h)
$$

Fact. The number of subsets of size k of a set of size n is

$$
\begin{aligned}
& C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)} \text { ! } \\
& \{A, C, G, E, B\} \\
& 26=n \\
& 5=k \\
& \frac{26!}{2!!5!} \Rightarrow \frac{n!}{(n-h)!n!} \\
& \text { [also called binomial } \\
& \text { coefficients] } \\
& P(n, h) \\
& \binom{n}{r} \\
& \text { sequenas vs subsets }
\end{aligned}
$$

Example - Counting Paths

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow ?

$$
31,2,3,4,3,6,7\}
$$

$$
34_{1} \text { (235 523 }
$$

Example - Counting Paths -2

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow ?

$$
\begin{aligned}
& \text { Poll: } \\
& \text { A. } 2^{7} \\
& \text { B. } \frac{7!}{4!}=\operatorname{mP}^{3}\left(7,{ }^{3}\right) \\
& \text { C. }\binom{7}{4}=\frac{7!}{4!3!} \\
& \text { D. }\binom{7}{3}=\frac{7!}{3!4!}
\end{aligned}
$$

Symmetry in Binomial Coefficients

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Proof. $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}$

Why??

This is called an Algebraic proof, i.e., Prove by checking algebra

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$
 $$
\begin{aligned} & n=u \\ & h=1 \end{aligned}
$$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded
\square

$$
\binom{4}{1}=4=\binom{4}{3}
$$

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

This is called a combinatorial argument/proof

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $=>|S|=N$
- Show how to count $|S|$ another way $=>|S|=m$

More examples of
combinatorial proofs coming soon!

Example - Counting Paths - 3

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow but stopping at Starbucks on $3^{r d}$ and Pike?"

Example - Counting Paths - 3

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow but stopping at Starbucks on $3^{r d}$ and Pike?"

Poll:
A. $\binom{7}{3}\binom{7}{3}\binom{7}{1}$
B. $\binom{4}{2}\binom{3}{1}$
C. $\binom{4}{2}\binom{3}{2}$

Agenda

- Recap
- k-Permutations
- Combinations
- Multinomial Coefficients
- Stars and Bars
- How to Answer a Question

Example - Word Permutations

How many ways to re-arrange the letters in the word "MATH"?

Poll:
A. $\binom{26}{4}$
B. 4^{4}

MATH

C. 4 !
D. I don't know

Example - Word Permutations

How many ways to re-arrange the letters in the word "MUUMUU"?

Example - Word Permutations

How many ways to re-arrange the letters in the word "MUUMUU"?

Choose where the 2 M's go, and then the U's are set OR Choose where the 4 U's go, and then the M's are set

Either way, we get $\binom{6}{2} \cdot\binom{4}{4}=\binom{6}{4} \cdot\binom{2}{2}=\frac{6!}{2!4!}$

Another way to think about it

How many ways to re-arrange the letters in the word "MUUMUU"?

Arrange the 6 letters as if they were distinct.

$$
M_{1} U_{1} U_{2} M_{2} U_{3} U_{4}
$$

Then divide by 4! to account for duplicate M's and divide by 2 ! to account for duplicate U's.
Yields $\frac{6!}{2!4!}$

Example - Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

Poll:
A. $7!$
B. $\frac{7!}{3!}$

C. $\frac{7!}{3!2!1!1!}$
D. $\binom{7}{3} \cdot\binom{5}{2} \cdot 3!$

Example - Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?
$\mathrm{n}=7$ (length of sequence) $\mathrm{K}=4$ types $=\{G, O, D, Y\}$ $\mathrm{n}_{1}=3, \mathrm{n}_{2}=2, \mathrm{n}_{3}=1, \mathrm{n}_{4}=1$
$\binom{7}{3,2,1,1}=\frac{7!}{3!2!1!1!}$

Multinomial coefficients

If we have k types of objects, with n_{1} of the first type, n_{2} of the second type,..,n_{k} of the $\mathrm{k}^{\text {th }}$ type, where
$n=n_{1}+n_{2}+\cdots+n_{k}$ then the number of arrangements of the n objects is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Note that objects of the same type are indistinguishable.

Agenda

- Recap
- k-Permutations
- Combinations
- Multinomial Coefficients
- Stars and Bars
- How to Answer a Question

Example: Kids and Candies

How many ways can we give five indistinguishable candies to these three kids?

Kids + Candies

Idea: Count something equivalent

5 "stars" for candies, 2 "bars" for dividers.

Kids + Candies

Idea: Count something equivalent

5 "stars" for candies, 2 "bars" for dividers.

Kids + Candies

For each candy distribution, there is exactly one corresponding way to arrange the stars and bars.

Conversely, for each arrangement of stars and bars, there is exactly one candy distribution it represents.

Kids + Candies

$$
\underset{\sim}{\infty} \geq 1 \geq 1
$$

Hence, the number of ways to distribute candies to the 3 kids is the number of arrangements of stars and bars.

This is

Stars and Bars / Divider method

The number of ways to distribute n indistinguishable balls into k distinguishable bins is

$\$ 3$ n

$$
\left(\frac{(n)+(1)-(1)}{k-1}\right)=\binom{n+k-1}{n}
$$

$$
\begin{aligned}
& --1-1--= \\
& 5+3-1
\end{aligned}
$$

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq$ 0 and $\sum_{i=1}^{k} x_{i}=n$?"

Example: $k=3, n=5$
$(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots$

Example - Sum of integers
Example: $k=3, n=5$

$$
(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots
$$

Clever representation of solutions

$(3,1,1)$
$(2,1,2)$
$(1,0,4)$

\downarrow
,
$1110101 \quad 1101011 \quad 1001111$

Example - Sum of integers

Example: $k=3, n=5$
\# sols = \# strings from $\{0,1\}^{7} \mathrm{w} /$ exactly two $0 \mathrm{~s}=\binom{7}{2}=21$

Clever representation of solutions

$(3,1,1)$
$(2,1,2)$
$(1,0,4)$

\downarrow
$1110101 \quad 1101011 \quad 1001111$

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq$ 0 and $\sum_{i=1}^{k} x_{i}=n$?"
\# sols = \# strings from $\{0,1\}^{n+k-1} \mathrm{w} / k-1$ os

$$
=\binom{n+k-1}{k-1}
$$

After a change in representation, the problem magically reduces to counting combinations.

Agenda

- Recap
- k-Permutations
- Combinations
- Multinomial Coefficients
- Stars and Bars
- How to Answer a Question

How to Answer a Question

- Be unambiguous
- Show that you understand the material
- Use notation correctly and aptly
- Don't be unnecessarily verbose
- "A classmate, who hasn't solved that problem but is up-todate on the material, should be able to read your solution and be reasonably convinced that it is the correct answer."

Example Solution (Section 1, Problem 10)

A group of n families, each with m members, are to be lined up for a photograph. In how many ways can the $n * m$ people be arranged if members of a family must stay together?

Use the product rule. First, arrange the n families in an order. This is a permutation of n distinct elements, so there are n ! ways to do this. Then, arrange the family members within each family, which is also a permutation so m !. There are n families so we get $n!{ }^{*}(m!)^{\wedge} n$

