## CSE 312 Foundations of Computing II

## Lecture 3: Counting III

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

## Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

## Agenda

- Recap
- Inclusion-Exclusion
- Binomial Theorem
- Pigeonhole Principle
- Combinatorial Proofs


## Recap

- Permutations

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

- Combinations

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

## Recap

- Multinomial Coefficients (bonus content in textbook, 1.2)
- Stars and Bars

Ways to distribute n indistinguishable balls into k distinct bins =

$$
\binom{n+k-1}{k-1}
$$

## Agenda

- Recap
- Inclusion-Exclusion
- Binomial Theorem
- Pigeonhole Principle
- Combinatorial Proofs


## Recap Disjoint Sets

Sets that do not contain common elements ( $A \cap B=\varnothing$ )


Sum Rule: $|A \cup B|=|A|+|B|$

## Inclusion-Exclusion

But what if the sets are not disjoint?


## Inclusion-Exclusion

But what if the sets are not disjoint?


Fact. $|A \cup B|=|A|+|B|-|A \cap B|$

## Inclusion-Exclusion

$$
\begin{aligned}
& |A|=43 \\
& |B|=20 \\
& |C|=35 \\
& |A \cap B|=7 \\
& |A \cap C|=16 \\
& |B \cap C|=11 \\
& |A \cap B \cap C|=4 \\
& |A \cup B \cup C|=? ? ?
\end{aligned}
$$

## Fact.

$|A \cup B \cup C|=|A|+|B|+|C|$

$$
-|A \cap B|-|A \cap C|-|B \cap C|
$$

$$
+|A \cap B \cap C|
$$

## Inclusion-Exclusion

Let $A, B$ be sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

In general, if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| & =\text { singles }- \text { doubles }+ \text { triples }- \text { quads }+\ldots \\
& =\left(\left|A_{1}\right|+\cdots+\left|A_{n}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\ldots+\left|A_{n-1} \cap A_{n}\right|\right)+\ldots
\end{aligned}
$$

## Agenda

- Recap
- Inclusion-Exclusion
- Binomial Theorem
- Pigeonhole Principle
- Combinatorial Proofs


## Binomial Theorem: Idea

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =x x+x y+y x+y y \\
& =x^{2}+2 x y+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
(x+y)^{4} & =(x+y)(x+y)(x+y)(x+y) \\
& =x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

## Binomial Theorem: Idea

Poll: What is the coefficient for $x y^{3}$ ?
B. $\binom{4}{1}$
C. $\binom{4}{3}$
D. 3

$$
\begin{aligned}
(x+y)^{4} & =(x+y)(x+y)(x+y)(x+y) \\
& =x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

## Binomial Theorem: Idea

$$
(x+y)^{n}=(x+y)(x+y)(x+y) \cdots(x+y)
$$

Each term is of the form $x^{k} y^{n-k}$, since each term is is made by multiplying exactly $n$ variables, either $x$ or $y$.

How many times do we get $x^{k} y^{n-k}$ ? The number of ways to choose $k$ of the $n$ variables we multiple to be an $x$ (the rest will be $y$ ).

$$
\binom{n}{k}=\binom{n}{n-k}
$$

## Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Corollary.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

## Agenda

- Recap
- Inclusion-Exclusion
- Binomial Theorem
- Pigeonhole Principle
- Combinatorial Proofs


## Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes


## Pigeonhole Principle: Idea



If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

## Pigeonhole Principle - More generally

If there are $n$ pigeons in $k<n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole.
Then, there are $<k \frac{n}{k}=n$ pigeons overall.
Contradiction!

## Pigeonhole Principle - Better version

If there are $n$ pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: $\lceil x\rceil$ is $x$ rounded up to the nearest integer (e.g., $[2.731\rceil=3$ )
- Floor: $\lfloor x\rfloor$ is $x$ rounded down to the nearest integer (e.g., $\lfloor 2.731\rfloor=2$ )


## Pigeonhole Principle - Example

## In a room with 367 people, there are at least two with the same birthday.

## Solution:

1. 367 pigeons $=$ people
2. 365 holes $=$ possible birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday

## Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

## Pigeonhole Principle - Example (Surprising?)

## In every set $S$ of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

## Agenda

- Recap
- Inclusion-Exclusion
- Binomial Theorem
- Pigeonhole Principle
- Combinatorial Proofs


## Combinatorial proof: Show that $M=N$

- Let $S$ be a set of objects
- $\quad$ Show how to count $|S|$ one way $=>|S|=M$
- $\quad$ Show how to count $|S|$ another way $=>|S|=N$
- Conclude that $M=N$

Binomial Coefficient - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k} \quad$ Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad$ Pascal's Identity
Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial theorem

## Pascal's Identities

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later } \ldots \\
& =\frac{n!}{k!(n-k)!} \\
& =\binom{n}{k} \quad \text { Hard work and not intuitive }
\end{aligned}
$$

Let's see a combinatorial argument

## Example - Binomial Identity

$$
\text { Fact. } \begin{aligned}
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$



$$
S=A \cup B, \text { disjoint }
$$

$S:$ the set of size $k$ subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$
$A$ : the set of size $k$ subsets of $[n]$ including $n$
$B$ : the set of size $k$ subsets of $[n]$ NOT including $n$

Sum rule: $|A \cup B|=|A|+|B|$

## Example - Binomial Identity

$$
\text { Fact. } \begin{aligned}
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$


$S:$ the set of size $k$ subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$ e.g.: $n=4, k=2, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
$A$ : the set of size 2 subsets of [4] including 4

$$
A=\{\{1,4\},\{2,4\},\{3,4\}\} .
$$

$B$ : the set of size 2 subsets of [4] NOT including 4

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

## Example - Binomial Identity

$$
\begin{array}{r}
\text { Fact. }\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| \quad|A| \quad|B|
\end{array}
$$

$S=A \cup B$

$S:$ the set of size $k$ subsets of $[n]=\{1,2, \cdots, n\}$
$A$ : the set of size $k$ subsets of $[n]$ including $n$
$n$ is in set, need to choose $k-1$ elements from $[n-1]$

$$
|A|=\binom{n-1}{k-1}
$$

$n$ not in set, need to choose $k$ elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

combinatorial argument/proof

- Elegant
- Simple
- Intuitive


## Algebraic argument

- Brute force
- Less Intuitive


This Photo by Unknown Author is licensed under CC BY-SA


## Agenda

- Recap
- Inclusion-Exclusion
- Binomial Theorem
- Pigeonhole Principle
- Combinatorial Proofs


## Counting Recap

- Core Theorems
- Sum \& Product Rule
- Permutations and Combinations
- Inclusion-Exclusion
- Binomial Theorem
- Counting Strategies
- Complimentary Counting
- Stars and Bars
- Pigeonhole Principle
- Combinatorial Proofs

