CSE 312 Foundations of Computing II

Lecture 6: More Conditional Probability

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

- Review: Conditional Probability, Bayes 🗨
- Law of Total Probability (w/ Bayes)

• Chain Rule

- Independence 🖉
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Last Class:

- Conditional Probability
- Bayes Theorem $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$

 $\overline{P}(A|B) \neq \overline{P}(B|A)$

 $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}$

B

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Law of Total Probability (Idea)

If we know $E_1, E_2, ..., E_n$ partition Ω , what can we say about P(F)

Law of Total Probability (LTP)

Definition. If events E_1, E_2, \dots, E_n partition the sample space Ω , then for any event F

$$P(F) = P(F \cap E_1) + ... + P(F \cap E_n) = \sum_{i=1}^{n} I(F \cap E_i)$$

Using the definition of conditional probability $P(F \cap E) = P(F|E)P(E)$ We can get the alternate form of this that show

$$P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

$$E_i$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two red balls, two green balls
- **Right pocket:** One red ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.] n = ned ballWhat is $\mathbb{P}(\mathbb{R})$?

1/2

Sequential Process – Non-Uniform Case

- Left pocket: Two red, two green
- **Right pocket:** One red, two green.
- Alice picks a random ball from a random pocket

Sequential Process – Non-Uniform Case

- Left pocket: Two red, two green
- **Right pocket:** One red, two green.

$$1/3 = \mathcal{P}(\mathbf{R} \mid \mathbf{R})$$
 and $2/3 = \mathcal{P}(\mathbf{G} \mid \mathbf{R})$

 $\mathbb{P}(\mathbf{R}) = \mathbb{P}(\mathbf{R} \cap \mathbf{Left}) + \mathbb{P}(\mathbf{R} \cap \mathbf{Right}) \quad \text{(Law of total probability)}$ $= \mathbb{P}(\mathbf{Left}) \times \mathbb{P}(\mathbf{R} | \mathbf{Left}) + \mathbb{P}(\mathbf{Right}) \times \mathbb{P}(\mathbf{R} | \mathbf{Right})$ $= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{4} + \frac{1}{6} = \begin{bmatrix} \frac{5}{12} \end{bmatrix}$

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^n P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if *E* is an event with non-zero probability, then

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

• Tests for diseases are rarely 100% accurate.

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test yields a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).

 $\mathbb{P}(z|T) = ?$

- A) Less than 0.25
- B) Between 0.25 and 0.5
- C) Between 0.5 and 0.75
 Between 0.75 and 1

- A test is 98% effective at detecting Zika ("true positive") $\mathbb{P}(\mathcal{T} | \mathbb{Z}) = 0.98$
- However, the test yields a "false positive" 1% of the time $7(\tau l_2) = 0.0$
- -0.5% of the US population has Zika. Π / Z) = 0.005

What is the probability you have Zika (event Z) if you test positive (event T). $\mathbb{R}(Z|T) = \frac{\mathbb{R}(T|Z)\mathbb{R}(2)}{\mathbb{R}(T)} = \frac{\mathbb{R}(T|Z)\mathbb{R}(2)}{\mathbb{R}(T)} = \frac{\mathbb{R}(T|Z)\mathbb{R}(2) + \mathbb{R}(T|Z')\mathbb{R}(2')}{\mathbb{R}(T)} = \frac{0.98 \cdot 0.005}{\mathbb{R}(T)} = 0.33$

Have zika blue, don't pink

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") 100%
- However, the test may yield a "false positive" 1% of the time 10/995 = approximately 1%

Demo

- 0.5% of the US population has Zika. 5 people have it.

What is the probability you have Zika (event Z) if you test positive (event T).

Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$\frac{5}{5+10} = \frac{1}{3} \approx 0.33$$

14

Philosophy – Updating Beliefs

т (z 1 z f т) т (z 1 z , т)

While it's not 98% that you have the disease, your beliefs changed drastically

RIZITOT)

Z = you have Zika

T = you test positive for Zika

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $(\mathbf{r}(T|z)) = 0.98$
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \overline{T}) if you have Zika (event Z)?

Conditional Probability Define a Probability Space

The probability conditioned on *A* follows the same properties as (unconditional) probability.

Example. $\mathbb{P}(\mathcal{B}^{c}|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$

P(B') = 1 - if(B)

Conditional Probability Define a Probability Space

The probability conditioned on *A* follows the same properties as (unconditional) probability. $\pi(A \cap B \mid c) = \pi(A \mid B, c) \pi(B \mid c)$

Example. $\mathbb{P}(\mathcal{B}^{c}|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space + $\mathbb{P}(\mathcal{A}) > 0$

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Chain Rule

 $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}$ $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A})$ R(B,A) · R(B)P(AB)

An easy way to remember: We have **n** tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards **in order**. (uniform probability space).

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Independence

$$\mathcal{P}(A \cap B) = \mathcal{TP}(A) \cdot \mathcal{TP}(B|A)$$

 $\mathcal{TP}(A) - \mathcal{TP}(B)$

Definition. If two events \mathcal{A} and \mathcal{B} are **independent** then

 $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$

Alternatively,

- If P(A) ≠ 0, equivalent to P(B|A) = P(B)
 If P(B) ≠ 0, equivalent to P(A|B) = P(A)

"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior = "The probability that \mathcal{B} occurs" -- Prior

Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- A = {at most one T} = {HĦĦ, HHT, HTH, THH}
- B = {at most 2 Heads}= {HHH}^c

Independent?

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{*}{=} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})$$

$$\mathbb{P}(\mathcal{A}) \stackrel{*}{=} \stackrel{*}{=} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})$$

$$\mathbb{P}(\mathcal{B}) \stackrel{*}{=} \stackrel{*}{=} \frac{1}{2}$$

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{*}{=} \frac{1}{2}$$

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{*}{=} \frac{1}{2}$$

Yes, independent

D.

Often probability space (Ω, \mathbb{P}) is **defined** using independence

Example – Network Communication

Each link works with the probability given, **independently**. What's the probability A and D can communicate?

 $\mathbb{P}(AD) = ? \mathbb{P}((AB \cap SD) \cup (A(\cap CD))$ = $\mathbb{P}(AB \cap BD) + \mathbb{P}(A(\cap CD) + - \mathbb{P}(AB \cap BD \cap A(\cap CD))$

TP(AB)TP(BD) 1P9 + 13 - P913

Example – Network Communication

Each link works with the probability given, **independently**. What's the probability A and D can communicate?

S

 $\mathbb{P}(AD) = \mathbb{P}(AB \cap BD \text{ or } AC \cap CD)$

 $= \mathbb{P}(AB \cap BD) + \mathbb{P}(AC \cap CD) - \mathbb{P}(AB \cap BD \cap AC \cap CD)$

 $\mathbb{P}(AB \cap BD) = \mathbb{P}(AB) \cdot \mathbb{P}(BD) = pq$

 $\mathbb{P}(AC \cap CD) = \mathbb{P}(AC) \cdot \mathbb{P}(CD) = rs$

 $\mathbb{P}(AB \cap BD \cap AC \cap CD) = \mathbb{P}(AB) \cdot \mathbb{P}(BD) \cdot \mathbb{P}(AC) \cdot \mathbb{P}(CD) = pqrs$

Example – Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other flips. Suppose it is tossed 3 times.

 $\mathbb{P}(HHH) =$

 $\mathbb{P}(TTT) =$

will go over next lecture

 $\mathbb{P}(HTT) =$

Example – Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.

 $\mathbb{P}(2 \text{ heads in } 3 \text{ tosses}) =$

A) (2/3)² 1/3
B) 2/3
C) 3 (2/3)² 1/3
D) (1/3)²

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

ended here for today

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C}).$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

 $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C}).$

Equivalence:

- If $\mathbb{P}(\mathcal{A} \cap \mathcal{C}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A} \cap \mathcal{C}) = \mathbb{P}(\mathcal{B}|\mathcal{C})$
- If $\mathbb{P}(\mathcal{B} \cap \mathcal{C}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} | \mathcal{B} \cap \mathcal{C}) = \mathbb{P}(\mathcal{A} | \mathcal{C})$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

 $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{B})$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Example – More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

ΙΤΡ

Pr(HH) = Pr(HH | C1) Pr(C1) + Pr(HH | C2) Pr(C2)

Example – More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

Pr(HH) = Pr(HH | C1) Pr(C1) + Pr(HH | C2) Pr(C2)LTP

= $Pr(H | C2)^2 Pr(C1) + Pr(H | C2)^2 Pr(C2)$ Conditional Independence

 $= 0.3^2 \cdot 0.5 + 0.9^2 \cdot 0.5 = 0.45$

 $0.5 \cdot 0.5 \pm 0.9 \cdot 0.5 = 0.45$

Pr(H) = Pr(H | C1) Pr(C1) + Pr(H | C2) Pr(C2) = 0.6

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Correlation

- Pick a person at random
- *A* : event that the person has lung cancer
- *B* : event that the person is a heavy smoker
- Fact: $\mathbb{P}(A|B) = 1.17 \cdot \mathbb{P}(A)$
- Conclusions?

Correlation

- Pick a person at random
- *A* : event that the person has lung cancer
- *B* : event that the person is a heavy smoker
- Fact: $\mathbb{P}(A|B) = 1.17 \cdot \mathbb{P}(A)$
- Conclusions?
 - Lung cancer increases the the probability of smoking by 17%.
 - Lung cancer causes smoking.

Causality vs. Correlation

• Events *A* and *B* are **positively correlated** if

 $\mathbb{P}(A \cap B) > \mathbb{P}(A) \cdot \mathbb{P}(B)$

- E.g. smoking and lung cancer.
- But *A* and *B* being positively correlated does not mean that *A* causes *B* or *B* causes *A*.

Causality vs. Correlation

• Events *A* and *B* are **positively correlated** if

 $\mathbb{P}(A \cap B) > \mathbb{P}(A) \cdot \mathbb{P}(B)$

• But *A* and *B* being positively correlated does not mean that *A* causes *B* or *B* causes *A*.

Other examples:

- Tesla owners are more likely to be rich. That does not mean poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Independence as an assumption

- People often assume it **without justification**.
- Example: A sky diver has two chutes

A : event that the main chute doesn't openB : event that the backup doesn't open

 $\mathbb{P}(A) = 0.02$ $\mathbb{P}(B) = 0.1$

• What is the chance that at least one opens assuming independence?

Independence as an assumption

- People often assume it **without justification**.
- Example: A sky diver has two chutes

A: event that the main chute doesn't open B: event that the backup doesn't open $\mathbb{P}(A) = 0.02$ $\mathbb{P}(B) = 0.1$

• What is the chance that at least one opens assuming independence?

• Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Monty Hall Problem

Suppose you're on a game show, and you're given the choice of three doors. Behind one of the doors is a car, behind the other, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to switch to door number 2?" Is it to your advantage to switch your choice of doors?

Assumptions

- The player is equally likely to pick each of the three doors.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
- If the host has a choice of which door to open, then he is equally likely to select each of them.

Should you switch or stay?