CSE 312

Foundations of Computing II

Lecture 6: More Conditional Probability

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Review: Conditional Probability, Bayes
- LLaw of Total Probability (w/ Bayes)
- Ohain Rule
- Independence \leftarrow
- Conditional Independence \nless

- Assumptions and Correlation
- Bonus: Monty Hall Problem

Last Class:

- Conditional Probability
- Bayes Theorem

$$
\mathbb{P}(\hat{A} \mid B) \quad \mathbb{P}(A \mid B) \neq \mathbb{F}(B \mid A)
$$

Agenda

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Law of Total Probability (Idea)

If we know $E_{1}, E_{2}, \ldots, E_{n}$ partition Ω, what can we say about $P(F)$

Law of Total Probability (LTP)

Definition. If events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω, then for any event F

$$
P(F)=P\left(F \cap E_{1}\right)+\ldots+P\left(F \cap E_{n}\right)=\sum_{i=1}^{n}\left(F \cap E_{0}\right)
$$

Using the definition of conditional probability $P(F \cap E)=P(F \mid E) P(E)$ We can get the alternate form of this that show

Another Contrived Example

Alice has two pockets: $1 / 2$

- Left pocket: Two red balls, two green balls
- Right pocket: One red ball, two green balls.
\qquad
Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

$$
R=\text { red ball }
$$

What is $\mathbb{P}(\mathbf{R})$?

Sequential Process - Non-Uniform Case

- Left pocket: Two red, two green
- Right pocket: One red, two green.
- Alice picks a random ball from a random pocket

$$
\begin{aligned}
& P(R)=\sqrt{T(R \cap(\&))}+\mathbb{P}(R \cap R(n t)
\end{aligned}
$$

Sequential Process - Non-Uniform Case

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

Example - Zika Testing

Zika fever

OVERVIEW

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test yields a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).

$$
\mathbb{P}(z \mid T)=?
$$

A) Less than 0.25
B) Between 0.25 and 0.5
C) Between 0.5 and 0.75
(D) Between 0.75 and 1

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\mathbb{P}(T / 2)=0.98$
- However, the test yields a "false positive" 1% of the time $\bar{\beta}\left(T \mid Z^{c}\right)=0.01$
- 0.5\% of the US population has Zika. T/ Z) = 0.005

$$
2, \ldots
$$

What is the probability you have Zika (event Z) if you test positive (event T).

$$
\begin{aligned}
\mathbb{P}(Z \mid T)=?=\frac{R(T \mid Z) R(2)}{R(T)} & =\frac{\pi(T \mid 2) \mathbb{P}(z)}{R 1+12) \mathbb{P}(2)+R\left(T \mid 2^{c}\right) \mathbb{R}\left(2^{\circ}\right)} \\
& =\frac{0.98 \cdot 0.005}{0.0 .00510 .01 .0 .995}=\sqrt{0.33}
\end{aligned}
$$

Example - Zika Testing

Have zika blue, don't pink
Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") 100%
- However, the test may yield a "false positive" 1% of the time 10/995 = approximately 1%
- 0.5% of the US population has Zika. 5 people have it.

What is the probability you have Zika (event Z) if you test positive (event T).

Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Philosophy - Updating Beliefs

$$
\begin{aligned}
& \pi(z|z| \pi) \\
& \pi(z \mid z, \pi)
\end{aligned}
$$

While it's not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

Posterior: $\mathrm{P}(\mathrm{Z\mid T})$

Example - Zika Testing
Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\mathbb{T}(\mathrm{T} \mid \mathrm{Z})=0.98$
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \bar{T}) if you have Zika (event Z)?

$$
\begin{gathered}
\mathbb{P}\left(T^{c} \mid z\right)=0.02 \\
\mathbb{R}\left(T^{c} \mid 2\right)=1-\mathbb{R}(T \mid z) \\
1-0.98
\end{gathered}
$$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability. Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \stackrel{\mathcal{A}}{ }\right)=1-\mathbb{P}(\mathcal{B} \mid \stackrel{\mathcal{A}}{ })$

$$
\mathbb{P}\left(B^{c}\right)=1, \mathbb{P}(B)
$$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

$$
\pi(A, B \mid C)=\pi(A \mid B, C) \pi(B \mid C)
$$

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Formally. $(\underset{a}{\Omega, \mathbb{P}})$ is a probability space $+\mathbb{P}(\mathcal{A})>0$

Agenda

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Chain Rule

$$
\frac{\mathbb{P}(\mathcal{B} \mid \mathcal{A})}{S}=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}
$$

$$
\begin{aligned}
& \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{s}=\mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A}) \\
& P(B \cap A)=\mathbb{P}(B) \mathbb{P}(A \mid B)
\end{aligned}
$$

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})
$$

Theorem.(Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

Agenda

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Independence

$$
\begin{aligned}
\mathbb{P}(\Delta, B)= & \mathbb{P}(A) \cdot \mathbb{P}(B \mid A) \\
& \mathbb{P}(A) \cdot \mathbb{P}(B)
\end{aligned}
$$

Definition. If two events \mathcal{A} and \mathcal{B} are independent then

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$
"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior $=$ "The probability that \mathcal{B} occurs" -- Prior

Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- $\mathrm{A}=\{$ at most one T$\}=\{\mathrm{H} \mid \boldsymbol{H}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
- $B=\{$ at most 2 Heads $\}=\{H H H\}^{c}$

Independent?

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{?}{\doteq} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

$$
\begin{aligned}
& R(A)=\frac{1}{2} \\
& \pi(B)=\frac{2}{8} \\
& R(A, B)=\frac{3}{8}
\end{aligned}
$$

Often probability space (Ω, \mathbb{P}) is defined using independence

Example - Network Communication
Each link works with the probability given, independently. What's the probability A and D can communicate?

$$
\begin{aligned}
& \mathbb{P}(A D)=\mathbb{P} \mathbb{P}(C A B \cap B D) \cup(A(\cap C D)) \\
& =\mathbb{P}(\underset{A}{\mathcal{B}} \cap \underline{B D})+\mathbb{P}(\underline{A C} \cap C D) \not-\mathbb{P}(A B \cap B D \cap A C \cap C D)
\end{aligned}
$$

$$
\mathbb{P}(A B) \operatorname{TP}(B D)
$$

$$
p q+1 s-p q r s
$$

Example - Network Communication

Each link works with the probability given, independently. What's the probability A and D can communicate?

$$
\begin{aligned}
& \mathbb{P}(A D)=\mathbb{P}(A B \cap B D \text { or } A C \cap C D) \\
& \quad=\mathbb{P}(A B \cap B D)+\mathbb{P}(A C \cap C D)-\mathbb{P}(A B \cap B D \cap A C \cap C D)
\end{aligned}
$$

$\mathbb{P}(A B \cap B D)=\mathbb{P}(A B) \cdot \mathbb{P}(B D)=p q$
$\mathbb{P}(A C \cap C D)=\mathbb{P}(A C) \cdot \mathbb{P}(C D)=r s$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other flips. Suppose it is tossed 3 times.
$\mathbb{P}(H H H)=$
$\mathbb{P}(T T T)=$

will go over next lecture

$\mathbb{P}(H T T)=$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.
$\mathbb{P}(2$ heads in 3 tosses $)=$
A) $(2 / 3)^{2} 1 / 3$
B) $2 / 3$
C) $3(2 / 3)^{2} 1 / 3$
D) $(1 / 3)^{2}$

Agenda

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
ended here for today
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A} \cap C)=\mathbb{P}(B \mid C)$
- If $\mathbb{P}(\mathcal{B} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B} \cap C)=\mathbb{P}(\mathcal{A} \mid C)$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}($ Head $)=0.3$ and a coin C2 with
$\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2)
$$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}($ Head $)=0.3$ and a coin C2 with
$\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2)
$$

$=\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 2) \quad$ Conditional Independence
$=0.3^{2} \cdot 0.5+0.9^{2} \cdot 0.5=0.45$

$$
\operatorname{Pr}(H)=\operatorname{Pr}(H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2) \operatorname{Pr}(C 2)=0.6
$$

Agenda

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Correlation

- Pick a person at random
- A : event that the person has lung cancer
- B : event that the person is a heavy smoker
- Fact: $\mathbb{P}(A \mid B)=1.17 \cdot \mathbb{P}(A)$
- Conclusions?

Correlation

- Pick a person at random
- A : event that the person has lung cancer
- B : event that the person is a heavy smoker
- Fact: $\mathbb{P}(A \mid B)=1.17 \cdot \mathbb{P}(A)$
- Conclusions?
- Lung cancer increases the the probability of smoking by 17%.
- Lung cancer causes smoking.

Causality vs. Correlation

- Events A and B are positively correlated if

$$
\mathbb{P}(A \cap B)>\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

- E.g. smoking and lung cancer.
- But A and B being positively correlated does not mean that A causes B or B causes A.

Causality vs. Correlation

- Events A and B are positively correlated if

$$
\mathbb{P}(A \cap B)>\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

- But A and B being positively correlated does not mean that A causes B or B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open

$$
\begin{aligned}
& \mathbb{P}(A)=0.02 \\
& \mathbb{P}(B)=0.1
\end{aligned}
$$

B : event that the backup doesn't open

- What is the chance that at least one opens assuming independence?

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open
$\mathbb{P}(A)=0.02$
B : event that the backup doesn't open
$\mathbb{P}(B)=0.1$
- What is the chance that at least one opens assuming independence?
- Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Agenda

- Review: Conditional Probability, Bayes
- Law of Total Probability (w/ Bayes)
- Chain Rule
- Independence
- Conditional Independence
- Assumptions and Correlation
- Bonus: Monty Hall Problem

Monty Hall Problem

Suppose you're on a game show, and you're given the choice of three doors. Behind one of the doors is a car, behind the other, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to switch to door number 2?" Is it to your advantage to switch your choice of doors?

Assumptions

- The player is equally likely to pick each of the three doors.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
- If the host has a choice of which door to open, then he is equally likely to select each of them.

Should you switch or stay?

