CSE 312: Foundations of Computing II

Section 8: MLE, MoM, Beta Solutions

1. 312 Grades

Suppose Professor Alex loses everyones grades for 312 and decides to make it up by assigning grades randomly according to the following probability distribution, and hoping the n students wont notice: give an A with probability 0.5 , a B with probability θ, a C with probability 2θ, and an F with probability $0.5-3 \theta$. Each student is assigned a grade independently. Let x_{A} be the number of people who received an A, x_{B} the number of people who received a B, etc, where $x_{A}+x_{B}+x_{C}+x_{F}=n$. Find the MLE for θ.

Solution:

The data tells us, for each student in the class, what their grade was. We begin by computing the likelihood of seeing the given data given our parameter θ. Because each student is assigned a grade independently, the likelihood is equal to the product over students of the chance they got the particular grade they got, which gives us:

$$
L(x \mid \theta)=0.5^{x_{A}} \theta^{x_{B}}(2 \theta)^{x_{C}}(0.5-3 \theta)^{x_{F}}
$$

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0 , and solve for $\hat{\theta}$.

$$
\begin{aligned}
\ln L(x \mid \theta)= & x_{A} \ln (0.5)+x_{B} \ln (\theta)+x_{C} \ln (2 \theta)+x_{F} \ln (0.5-3 \theta) \\
& \frac{\partial}{\partial \theta} \ln L(x \mid \theta)=\frac{x_{B}}{\theta}+\frac{x_{C}}{\theta}-\frac{3 x_{F}}{0.5-3 \theta}=0
\end{aligned}
$$

Solving yields $\hat{\theta}=\frac{x_{B}+x_{C}}{6\left(x_{B}+x_{C}+x_{F}\right)}$.

2. A Red Poisson

Suppose that x_{1}, \ldots, x_{n} are i.i.d. samples from a $\operatorname{Poisson}(\theta)$ random variable, where θ is unknown. Find the MLE of θ.

Solution:

Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution multiplied together for every x_{i}. From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\prod_{i=1}^{n} e^{-\theta} \frac{\theta^{x_{i}}}{x_{i}!} \\
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-\theta-\ln \left(x_{i}!\right)+x_{i} \ln (\theta)\right] \\
\frac{\partial}{\partial \theta} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-1+\frac{x_{i}}{\theta}\right]=0 \\
-n+\frac{\sum_{i=1}^{n} x_{i}}{\hat{\theta}} & =0 \\
\hat{\theta}=\frac{\sum_{i=1}^{n} x_{i}}{n} &
\end{aligned}
$$

3. Independent Shreds, You Say?

You are given 100 independent samples $x_{1}, x_{2}, \ldots, x_{100}$ from $\operatorname{Bernoulli}(\theta)$, where θ is unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30 . You would like to estimate the distribution's parameter θ. Give all answers to 3 significant digits. What is the maximum likelihood estimator $\hat{\theta}$ of θ ?

Solution:

Note that $\Sigma_{i \in[n]} x_{i}=30$, as given in the problem spec. Therefore, there are $30 \mathbf{1 s}$ and 700 s . (Note that they come in some specific order.) Therefore, we can setup L as follows, because there is a θ chance of getting a 1 , and a $(1-\theta)$ chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =(1-\theta)^{70} \theta^{30} \\
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =70 \ln (1-\theta)+30 \ln \theta \\
\frac{\partial}{\partial \theta} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =-\frac{70}{1-\theta}+\frac{30}{\theta}=0 \\
\frac{30}{\hat{\theta}} & =\frac{70}{1-\hat{\theta}} \\
30-30 \hat{\theta} & =70 \hat{\theta} \\
\hat{\theta} & =\frac{30}{100}
\end{aligned}
$$

4. Y Me ?

Let $y_{1}, y_{2}, \ldots y_{n}$ be i.i.d. samples of a random variable with density function

$$
f_{Y}(y \mid \theta)=\frac{1}{2 \theta} \exp \left(-\frac{|y|}{\theta}\right)
$$

Find the MLE for θ in terms of $\left|y_{i}\right|$ and n.

Solution:

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together. From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$
\begin{aligned}
L\left(y_{1}, \ldots, y_{n} \mid \theta\right) & =\prod_{i=1}^{n} \frac{1}{2 \theta} \exp \left(-\frac{\left|y_{i}\right|}{\theta}\right) \\
\ln L\left(y_{1}, \ldots, y_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-\ln 2-\ln \theta-\frac{\left|y_{i}\right|}{\theta}\right] \\
\frac{\partial}{\partial \theta} \ln L\left(y_{1}, \ldots, y_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-\frac{1}{\theta}+\frac{\left|y_{i}\right|}{\theta^{2}}\right]=0 \\
-\frac{n}{\hat{\theta}}+\frac{\sum_{i=1}^{n}\left|y_{i}\right|}{\hat{\theta}^{2}} & =0 \\
\hat{\theta}=\frac{\sum_{i=1}^{n}\left|y_{i}\right|}{n} &
\end{aligned}
$$

5. Pareto

The Pareto distribution was discovered by Vilfredo Pareto and is used in a wide array of fields but particularly social sciences and economics. It is a density function with a slowly decaying tail, for example it can describe the wealth distribution (a small group at the top holds most of the wealth). The PDF is given by:

$$
f_{X}(x ; m, \alpha)=\frac{\alpha m^{\alpha}}{x^{\alpha+1}}
$$

where $x \geq m$ and real $\alpha, m>0$. m describes the minimum value that X takes on (scale) and α is the shape. So the range of X is $\Omega_{X}=[m, \infty)$. Assume that m is given and that $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d. samples from the Pareto distribution. Find the MLE estimation of α.

Solution:

We first need to solve for the likelihood function for which we have:

$$
L\left(x_{1}, \ldots, x_{n} ; \alpha\right)=\prod_{i=1}^{n} \frac{\alpha m^{\alpha}}{x_{i}^{\alpha+1}}
$$

So, for the log-likelihood function we have:

$$
\begin{aligned}
l(\alpha) & =\sum_{i=1}^{n}\left(\ln \left(\frac{\alpha m^{\alpha}}{x_{i}^{\alpha+1}}\right)\right) \\
& =\sum_{i=1}^{n}\left(\ln \left(\alpha m^{\alpha}\right)-\ln \left(x_{i}^{\alpha+1}\right)\right) \\
& =\sum_{i=1}^{n}\left(\ln (\alpha)+\alpha \ln (m)-(\alpha+1) \ln \left(x_{i}\right)\right) \\
& =n \ln (\alpha)+n \alpha \ln (m)-(\alpha+1) \sum_{i=1}^{n} \ln \left(x_{i}\right)
\end{aligned}
$$

So, for the derivative with respect to α we have:

$$
\frac{\partial l(\alpha)}{\partial \alpha}=\frac{n}{\alpha}+n \ln (m)-\sum_{i=1}^{n} \ln \left(x_{i}\right)
$$

And then by setting to zero we get:

$$
\begin{aligned}
\frac{n}{\hat{\alpha}}+n \ln (m)-\sum_{i=1}^{n} \ln \left(x_{i}\right) & =0 \\
\frac{n}{\hat{\alpha}} & =\sum_{i=1}^{n} \ln \left(x_{i}\right)-n \ln (m) \\
\hat{\alpha} & =\frac{n}{\sum_{i=1}^{n} \ln \left(x_{i}\right)-n \ln (m)} \\
& =\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \ln \left(x_{i}\right)-\ln (m)} \\
& =\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \ln \left(x_{i}\right)-\ln (m)} \\
& =\frac{1}{\overline{\ln (x)}-\ln (m)}
\end{aligned}
$$

Now, let's (optionally) do a second derivative test to prove this is in fact a maximum. We have:

$$
\frac{\partial^{2} l(\alpha)}{\partial \alpha^{2}}=-\frac{n}{\alpha^{2}}<0
$$

So this is a maximum!

6. MOM Practice

Let X_{1}, \ldots, X_{n} be a random sample from the distribution with PDF $f_{X}(x \mid \theta)=\left(\theta^{2}+\theta\right) x^{\theta-1}(1-x)$ for $0<x<1$ and $\theta>0$. What is the MOM estimator for θ ?

Solution:

First, we need to determine the first moment of $\mathrm{X}, \mathrm{E}[\mathrm{X}]$:

$$
\begin{aligned}
E[X] & =\int_{0}^{1} x\left(\theta^{2}+\theta\right) x^{\theta-1}(1-x) d x \\
& =\int_{0}^{1}\left(\theta^{2}+\theta\right) x^{\theta}(1-x) d x \\
& =\left(\theta^{2}+\theta\right) \int_{0}^{1} x^{\theta}-x^{\theta+1} d x \\
& =\left(\theta^{2}+\theta\right)\left[\frac{x^{\theta+1}}{\theta+1}-\frac{x^{\theta+2}}{\theta+2}\right]_{0}^{1} \\
& =\frac{\theta(\theta+1)}{(\theta+1)(\theta+2)} \\
& =\frac{\theta}{\theta+2}
\end{aligned}
$$

We then set the first true moment to the first sample moment as follows:

$$
\frac{\theta}{\theta+2}=\bar{x}
$$

Solving for θ, we get

$$
\begin{gathered}
\theta=(\theta+2) \bar{x} \\
\theta-\theta \bar{x}=2 \bar{x} \\
\theta=\frac{2 \bar{x}}{1-\bar{x}}
\end{gathered}
$$

(Notice, though, that the original PDF looks a lot like the beta distribution PDF.
In fact, $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\alpha=\theta$ and $\beta=2$, for which we know $E[X]=\frac{\alpha}{\alpha+\beta}=\frac{\theta}{\theta+2}$.)

7. Laplace

Suppose $x_{1}, \ldots, x_{2 n}$ are iid realizations from the Laplace density (double exponential density)

$$
f_{X}(x \mid \theta)=\frac{1}{2} e^{-|x-\theta|}
$$

Find the MLE for θ. For this problem, you need not verify that the MLE is indeed a maximizer. You may find the sign function useful:

$$
\operatorname{sgn}(x)= \begin{cases}+1, & x>0 \\ -1, & x<0\end{cases}
$$

(in our case undefined at 0)

Solution:

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{2 n} \mid \theta\right) & =\prod_{i=1}^{2 n} \frac{1}{2} e^{-\left|x_{i}-\theta\right|} \\
\ln L\left(x_{1}, \ldots, x_{2 n} \mid \theta\right) & =\sum_{i=1}^{2 n}\left[-\ln 2-\left|x_{i}-\theta\right|\right] \\
\frac{\partial}{\partial \theta} \ln L\left(x_{1}, \ldots, x_{2 n} \mid \theta\right) & =\sum_{i=1}^{2 n} \operatorname{sgn}\left(x_{i}-\theta\right)=0 \\
\hat{\theta} & =\text { any value in }\left[x_{n}^{\prime}, x_{n+1}^{\prime}\right]
\end{aligned}
$$

where x_{i}^{\prime} is the $i^{\text {th }}$ order statistic: the $i^{\text {th }}$ smallest observation.
Intuitively (ignoring the edge cases) this is because if $\theta \in\left[x_{n}^{\prime}, x_{n+1}^{\prime}\right]$, for $i \in\{1, \ldots, n\}, \operatorname{sgn}\left(x_{i}^{\prime}-\theta\right)=-1$ and for $i \in\{n+1, \ldots, 2 n\}, \operatorname{sgn}\left(x_{i}^{\prime}-\theta\right)=1$. So the sum of these will be zero.
If you want to argue that this is a global maximizer, note that the log likelihood is the sum of concave functions (negative absolute value), so every critical point is a global maximizer.
However, if you want to argue this more rigorously considering edge cases, we need to show that it is a maximizer, but the second derivative test is inconclusive because the second derivative is 0 except at $x_{1}, x_{2}, \ldots, x_{2 n}$, where it is undefined. We inspect the \log likelihood $\ln L\left(x_{1}, \ldots, x_{2 n} \mid \theta\right)$ directly, ignoring the constant $-\ln 2$ terms:

$$
S=-\sum_{i=1}^{2 n}\left|x_{i}-\theta\right|
$$

If $\theta \in\left[x_{n}^{\prime}, x_{n+1}^{\prime}\right], S=-\sum_{i=1}^{n}\left(x_{n+i}^{\prime}-x_{n+1-i}^{\prime}\right)$. When θ crosses an endpoint of $\left[x_{n}^{\prime}, x_{n+1}^{\prime}\right]$, the term $\left|x_{n+1}^{\prime}-x_{n}^{\prime}\right|$ in this sum is replaced by something greater, so S decreases. Therefore, the log likelihood is maximized when $\theta \in\left[x_{n}^{\prime}, x_{n+1}^{\prime}\right]$. This is also why we need to include the end points in our interval.

8. Beta

(a) Suppose you have a coin where you have no prior belief on its true probability of heads p. How can you model this belief as a Beta distribution?
(b) Suppose you have a coin which you believe is fair, with strength α. That is, pretend youve seen α heads and α tails. How can you model this belief as a Beta distribution?
(c) Now suppose you take the coin from the previous part and flip it 10 times. You see 8 heads and 2 tails. How can you model your posterior belief of the coins probability of heads?

Solution:

(a) Beta $(1,1)$ is a uniform prior, meaning that prior to seeing the experiment, all probabilities of heads are equally likely.
(b) $\operatorname{Beta}(\alpha+1, \alpha+1)$. This is our prior belief about the distribution.
(c) $\operatorname{Beta}(\alpha+9, \alpha+3)$.

