
Chapter 3. Discrete Random Variables

3.1: Discrete Random Variables Basics
Slides (Google Drive) Alex Tsun Video (YouTube)

3.1.1 Introduction to Discrete Random Variables

Suppose you flip a fair coin twice. Then the sample space is:

Ω = {HH,HT, TH, TT}

Sometimes, though, we don’t care about the order (HT vs TH), but just the fact that we got one heads and
one tail. So we can define a random variable as a numeric function of the outcome.

For example, we can define X to be the number of heads in the two independent flips of a fair coin. Then
X is a function, X : Ω→ R which takes outcomes ω ∈ Ω and maps them to a number. For example, for the
outcome HH, we have X(HH) = 2 since there are two heads. See the rest below!

X(HH) = 2

X(HT ) = 1

X(TH) = 1

X(TT ) = 0

X is an example of a random variable, which brings us to the following definition:

Definition 3.1.1: Random Variable

Suppose we conduct an experiment with sample space Ω. A random variable (rv) is a numeric
function of the outcome, X : Ω→ R. That is it maps outcomes ω ∈ Ω to numbers, ω → X(ω).
The set of possible values X can take on is its range/support, denoted ΩX .
If ΩX is finite or countable infinite (typically integers or a subset), X is a discrete random variable
(drv). Else if ΩX is uncountably large (the size of real numbers), X is a continuous random
variable.

Example(s)

Below are some descriptions of random variables. Find their ranges and classify them as a discrete
random variable (DRV) or continuous random variable (CRV). The first row is filled out for you as
an example!
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https://docs.google.com/presentation/d/176Z-Yo7CqzQrG2-qh2uXOrYAWHp5PLdiwQUgATOOtjI/edit
https://www.youtube.com/watch?v=STcqHZyPRI8&list=PLeB45KifGiuHesi4PALNZSYZFhViVGQJK&index=10&ab_channel=5MinuteAI
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RV Description Range DRV or CRV?

X, the # of heads in n flips of a fair coin {0, 1, . . . , n} DRV
N , the # of people born this year. TODO TODO

F , the # of flips of a fair coin up to and including my first head. TODO TODO
B, the amount of time I wait for the next bus in seconds. TODO TODO

C, the temperature in Celsius of liquid water TODO TODO

Solution Here is the solution in a table, with explanations below.

RV Description Range DRV or CRV?

X, the # of heads in n flips of a fair coin {0, 1, . . . , n} DRV
N , the # of people born this year. {0, 1, 2, . . . } DRV

F , the # of flips of a fair coin up to and including my first head. {1, 2, . . . , } DRV
B, the amount of time I wait for the next bus in seconds. [0,∞) CRV

C, the temperature in Celsius of liquid water (0, 100) CRV

• The range of X is ΩX = {0, 1, . . . , n} because there could be any where from 0 to n heads flipped. It
is a discrete random variable because there are finite n + 1 values that it takes on.

• The range of N is ΩN = {0, 1, 2 . . . } because there is no upper bound on the number of people that
can be born. This is countably infinite as it is a subset of all the integers, so it is a discrete random
variable.

• The range of F is ΩF = {1, 2, . . . } because it will take at least 1 flip to flip a head or it could always
be tails and never flip a head (although the chance is low). This is still countable as a subset of all the
integers, so it is a discrete random variable.

• The range of B is ΩB = [0,∞), as there could be partial seconds waited, and it could be anywhere from
0 seconds to a bus never coming. This is a continuous random variable because there are uncountably
many values in this range.

• The range of C is ΩC = (0, 100) because the temperature can be any real number in this range. It
cannot be 0 or below because that would be frozen (ice), nor can it be 100 or above because this would
be boiling (steam). This is a continuous random variable.

3.1.2 Probability Mass Functions

Let’s return to X which we defined to be the number of heads in the flip of two fair coins. We already
determined that Ω = Ω = {HH,HT, TH, TT} and X(HH) = 2, X(HT ) = 1, X(TH) = 1 and X(TT ) = 0.
The range, ΩX , is {0, 1, 2}.

We can define the probability mass function (pmf) of X, as pX : ΩX → [0, 1]:

pX(k) = P (X = k)

to calculate the probabilities that X takes on each of these values.
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In this case we have the following:

pX(k) =


1
4 k = 0
1
2 k = 1
1
4 k = 2

this is because the number of outcomes for X = 0 is 1 of the 4, the number of outcomes for X = 1 is 2 of
the 4, and the number of outcomes for X = 2 is 1 of the 4.

This brings us to the formal definition of a probability mass function:

Definition 3.1.2: Probability Mass Function (pmf)

The probability mass function (pmf) of a discrete random variable X assigns probabilities to the
possible values of the random variable. That is pX : ΩX → [0, 1] where:

pX(k) = P (X = k)

Note that {X = a} for a ∈ Ω form a partition of Ω, since each outcome a ∈ Ω is mapped to exactly
one number. Hence, ∑

z∈ΩX

pX(z) = 1

Notice here the only thing consistent is pX , as it’s the PMF of X. The value inside is a dummy
variable - just like we can write f(x) = x2 or f(t) = t2. To reinforce this, I will constantly use
different letters for dummy variables.

3.1.3 Expectation

We have this idea of a random variable, which is actually neither random nor a variable (it’s a deterministic
function X : Ω → ΩX .) However, the way I like to think about it is: it a random quantity which we do
not know the value of yet. You might want to know what you might expect it to equal on average. For
example, X could be the random variable which represents the number of babies born in Seattle per day. On
average, X might be equal to 250, and we would write that its average/mean/expectation/expected value is
E [X] = 250.

Let’s go back to the coin example though to define expectation. Your intuition might tell you that the
expected number of heads in 2 flips of a fair coin would be 1 (you would be correct).

Since X was the random variable defined to be the number of heads in 2 flips of a fair coin, we denote this
E [X]. Think of this as the average value of X.

More specifically, imagine if we repeated the two coin flip experiment 4 times. Then we would “expect” to
get HH, HT , TH, and TT each once. Then, we can divide by the number of times (4) to get 1.

2 + 1 + 1 + 0

4
= 2 · 1

4
+ 1 · 1

4
+ 1 · 1

4
+ 0 · 1

4
= 1
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Notice that:

2 · 1

4
+ 1 · 1

4
+ 1 · 1

4
+ 0 · 1

4
= X(HH)P (HH) + X(HT )P (HT ) + X(TH)P (TH) + X(TT )P (TT )

=
∑
ω∈Ω

X(ω)P (ω)

This is the the sum of the random variable’s value for each outcome multiplied by the probability of that
outcome (a weighted average).

Another way of writing this is by multiplying every value that X takes on (in its range) with the probability
of that value occurring (the pmf). Notice that below is the same exact sum, but groups the common values
together (since X(HT ) = X(TH) = 1). That is:

2 · 1

4
+ 1 ·

(
1

4
+

1

4

)
+ 0 · 1

4
= 2 · 1

4
+ 1 · 2

4
+ 0 · 1

4
=
∑

k∈ΩX

k · pX(k)

This brings us to the definition of expectation.

Definition 3.1.3: Expectation

The expectation/expected value/average of a discrete random variable X is:

E [X] =
∑
ω∈Ω

X(ω)P (ω)

or equivalently,

E [X] =
∑

k∈ΩX

k · pX(k)

The interpretation is that we take an average of the possible values, but weighted by their probabilities.

3.1.4 Exercises

1. Let X be the value of single roll of a fair six-sided dice. What is the range ΩX , the PMF pX(k), and
the expectation E [X]?

Solution: The range is ΩX = {1, 2, 3, 4, 5, 6}. The pmf is

pX(k) =
1

6
, k ∈ ΩX

The expectation is

E [X] =
∑

k∈ΩX

k · pX(k) = 1 · 1

6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
=

1

6
(1 + 2 + · · ·+ 6) = 3.5

This kind of makes sense right? You expect the “middle number” between 1 and 6, which is 3.5.

2. Suppose at time t = 0, a frog starts on a 1-dimensional number line at the origin 0. At each step, the
frog moves independently : left with probability 1/10, and right (with probability 9/10). Let X be the
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position of the frog after 2 time steps. What is the range ΩX , the PMF pX(k), and the expectation
E [X]?

Solution: The range is ΩX = {−2, 0, 2}. To find the pmf, we find the probabilities of being
each of those three values.

(a) For X to equal −2, we have to move left both times, which happens with probability 1
10 ·

1
10 by

independence of the moves.

(b) For X to equal 2, we have to move right both times, which happens with probability 9
10 ·

9
10 by

independence of the moves.

(c) Finally, for X to equal 0, we have to take opposite moves. So either LR or RL, which happens
with probability 2 · 1

10 ·
9
10 = 18

100 . Alternatively, the easier way is to note that these three values
sum to 1, so P (X = 0) = 1− P (X = 2)− P (X = −2) = 1− 81

100 −
1

100 = 18
100

So our PMF is:

pX(k) =


1/100 k = −2

18/100 k = 0

81/100 k = 2

The expectation is

E [X] =
∑

k∈ΩX

k · pX(k) = −2 · 1

100
+ 0 · 18

100
+ 2 · 81

100
= 1.6

You might have been able to guess this, but how? At each time step you “expect” to move to the
right by 9

10 −
1
10 which is 0.8. So after two steps, you would expect to be at 1.6. We’ll formalize this

approach more in the next chapter!

3. Let X be the number of independent coin flips up to and including our first head, where P (head) = p.
What is the range ΩX , the PMF pX(k), and the expectation E [X]?

Solution: The range is ΩX = {1, 2, 3, ...}, since it could theoretically take any number of flips.
The pmf is

pX(k) = (1− p)k−1p, k ∈ ΩX

Why? We can start slowly.

(a) P (X = 1) is the probability we get heads (for the first time) on our first try, which is just p.

(b) P (X = 2) is the probability we get heads (for the first time) on our second try, which is (1− p)p
since we had to get a tails first.

(c) P (X = k) is the probability we get heads (for the first time) on our kth try, which is (1− p)k−1p,
since we had to get all tails on the first k − 1 tries (otherwise, our first head would have been
earlier).

The expectation is pretty complicated and uses a calculus trick, so don’t worry about it too much.
Just understand the first two lines, which are the setup! But before that, what do you think it should
be? For example, if p = 1/10, how many flips do you think it would take until our first head? Possibly
10? And if p = 1/7, maybe 7? So seems like our guess will be E [X] = 1

p . It turns out this intuition is
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actually correct!

E [X] =
∑

k∈ΩX

k · pX(k) [def of expectation]

=

∞∑
k=1

k(1− p)k−1p

= p

∞∑
k=1

k(1− p)k−1 [p is a constant with respect to k ]

= p

∞∑
k=1

d

dp
(−(1− p)k)

[
d

dy
yk = kyk−1

]

= −p

(
d

dp

∞∑
k=1

(1− p)k−1

)
[swap sum and integral]

= −p
(

d

dp

1

1− (1− p)

) [
geometric series formula:

∞∑
i=0

ri =
1

1− r

]

= −p
(

d

dp

1

p

)
= −p

(
− 1

p2

)
=

1

p
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