
Chapter 3. Discrete Random Variables

3.4: Zoo of Discrete Random Variables Part I
Slides (Google Drive) Alex Tsun Video (YouTube)

In this section, we’ll define formally what it means for random variables to be independent. Then, for the
rest of the chapter (3.4, 3.5, 3.6), we’ll discuss commonly appearing random variables for which we can just
cite its properties like its PMF, mean, and variance without doing any work! These situations are so common
that we name them, and can refer to them and related quantities easily!

3.4.1 Independence of Random Variables

Definition 3.4.1: Independence

Random variables X and Y are independent, denoted X ⊥ Y , if for all x ∈ ΩX and all y ∈ ΩY , any
of the following three equivalent properties holds:

1. P (X = x | Y = y) = P (X = x)

2. P (Y = y | X = x) = P (Y = y)

3. P (X = x ∩ Y = y) = P (X = x) · P (Y = y)

Note, that this is the same as the event definition of independence, but it must hold for all events
{X = x} and {Y = y}.

Theorem 3.4.1: Variance Adds for Independent RVs

If X ⊥ Y , then
Var (X + Y ) = Var (X) + Var (Y )

This will be proved a bit later, but we can start using this fact now! It is important to remember
that you cannot use this formula if the random variables are not independent (unlike linearity).

A common misconception is that Var (X − Y ) = Var (X)−Var (Y ), but this actually isn’t true, otherwise we
could get a negative number. In fact, if X ⊥ Y , then

Var (X − Y ) = Var (X + (−Y )) = Var (X) + Var (−Y ) = Var (X) + (−1)2Var (Y ) = Var (X) + Var (Y )

3.4.2 The Bernoulli Process and Bernoulli Random Variable

There are several random variables that occur naturally and frequently! It is often useful to be able to
recognize these random variables by their characterization, so we can take advantage of relevant properties
such as probability mass functions, expected values, and variance. In the rest of this section and chapter 3,
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we will explore some fundamental discrete random variables, while finding those aforementioned properties,
so that we can just cite them instead of doing all the work again!

Before diving into the random variables themselves, let’s look at a situation that arises often...

Definition 3.4.2: Bernoulli Process

A Bernoulli process with parameter p is a sequence of independent coin flips X1, X2, X3, ... where
P (head) = p. If flip i is heads, then we encode Xi = 1; otherwise, Xi = 0. From this process we can
measure many interesting things.

Let’s illustrate how this might be useful with an example. Suppose we independently flip 8 coins that land
heads with probability p, and get the following sequence of coin flips

This series of flips is a Bernoulli process. We call each of these coin flips a Bernoulli random variable (or
indicator rv).

Definition 3.4.3: Bernoulli/Indicator Random Variable

A random variable X is Bernoulli (or indicator), denoted X ∼ Ber(p), if and only if X has the
following PMF:

pX(k) =

{
p, k = 1

1− p, k = 0

Each Xi in the Bernoulli process with parameter p is Bernoulli/indicator random variable with
parameter p. It simply represents a binary outcome, like a coin flip.

Additionally,
E [X] = p and Var (X) = p (1− p)

Proof of Expectation and Variance of Bernoulli.
Suppose X ∼ Ber(p). Then

E [X] = 1 · p + 0 · (1− p) = p

Now for the variance, we compute E
[
X2
]

first by LOTUS:

E
[
X2
]

= 12 · p + 02 · (1− p) = p

Var (X) = E
[
X2
]
− E [X]

2
= p− p2 = p(1− p)
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Notice how we found a situation whose general form comes up quite often, and derived a random variable
that models that situation well. Now, anytime we need a Bernoulli/indicator random variable we can denote
it as follows: X ∼ Ber(p).

3.4.3 The Binomial Random Variable

If you recall, one of the main reasons that indicator random variables are useful is because they can compose
more complicated random variables. For example, in the sequence of coin flips above, we might be interested
in modeling the probability of getting a certain number of heads. In order to do this, it would be useful to
use a random variable that is equal to the sum of the Bernoulli’s that each represent a single flip. These
types of random variables also come up frequently, so we have a special name for them, binomial random
variables.

X ∼ Bin(n, p) =

n∑
i=1

Xi, where Xi’s are independent Bernoulli random variables

That is, we write X ∼ Bin(n, p) to be the number of heads in n independent flips of a coin with P (head) = p.
Why is it true that if X is the number of heads in n flips, that X =

∑n
i=1 Xi (recall the mermaids in 3.3)?

Let’s try to derive the PMF of a binomial rv. Its range is ΩX = {0, 1, . . . , n} since we can get anywhere
from 0 heads to n heads. Let’s consider the case of n = 5 flips, and figure out the probability we get exactly
4 heads, P (X = 4).

Here’s one sample sequence of heads and tails with exactly four heads, HTHHH, and its probability is (by
independence):

P (HTHHH) = p · (1− p) · p · p · p = p4(1− p)5−4

But this is not the only sequence of flips which gives exactly 4 heads! How many such sequences are there?
There are

(
5
4

)
since we choose 4 out of the 5 positions to put the heads, and the remaining must be tails.

Haha, so our counting knowledge is finally being applied! So we must sum these
(
5
4

)
disjoint cases, and we

get

P (X = 4) =

(
5

4

)
p4(1− p)5−1

We can generalize this as follows to get the PMF of a binomial random variable:

pX(k) = P (X = k) = P (exactly k heads in n Bernoulli trials) =

(
n

k

)
pk(1− p)n−k, k ∈ ΩX

This hopefully sheds some light on why
(
n
k

)
is called a binomial coefficient and X a binomial random variable.

Before computing its expectation, let’s make sure we didn’t make a mistake, and check that our probabilities
sum to 1. This will use the binomial theorem we learned in chapter 1 finally: (x + y)n =

∑n
k=0

(
n
k

)
xkyn−k.

n∑
k=0

pX(k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k [PMF of Binomial RV]

= (p + (1− p))n [binomial theorem]

= 1n = 1
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Definition 3.4.4: Binomial Random Variable

A random variable X has a Binomial distribution, denoted X ∼ Bin(n, p), if and only if X has the
following PMF for k ∈ ΩX = {0, 1, 2, . . . , n}:

pX(k) =

(
n

k

)
pk(1− p)n−k

X is the sum of n independent Ber(p) random variables, and represents the number of heads in n
independent coin flips where P (head) = p.

Additionally,
E [X] = np and Var (X) = np(1− p)

Proof of Expectation and Variance of Binomial. We can use linearity of expectation to compute the expected
value of a particular binomial variable (i.e. the expected number of successes in n Bernoulli trials). Let
X ∼ Bin(n, p).

E [X] = E

[
n∑

i=1

Xi

]

=

n∑
i=1

E [Xi] [linearity of expectation]

=

n∑
i=1

p [expectation of Bernoulli]

= np

This makes sense! If X ∼ Bin(100, 0.5) (number of heads in 100 independent flips of a fair coin), you expect
50 heads, which is just np = 100 · 0.5 = 50. Variance can be found in a similar manner

Var (X) = Var

(
n∑

i=1

Xi

)

=

n∑
i=1

Var (Xi) [variance adds if independent rvs]

=

n∑
i=1

p (1− p) [variance of Bernoulli]

= np(1− p)

Like Bernoulli rvs, Binomial random variables have a special place in our zoo. Argually, Binomial rvs are
probably the most important discrete random variable, so make sure to understand everything above and
be ready to use it!

It is important to note for the hat check example in 3.3 that we had the sum of n Bernoulli/indicator rvs
BUT that they were NOT independent. This is because if we know one person gets their hat back, someone
else is more likely to (since there are n−1 possibilities instead of n). However, linearity of expectation works
regardless of independence, so we were able to still add their expectations like so

E [X] =

n∑
i=1

E [Xi] = n · 1

n
= 1



3.4 Probability & Statistics with Applications to Computing 5

It would be incorrect to say that X ∼ Bin
(
n, 1

n

)
because the indicator rvs were NOT independent.

Example(s)

A factory produces 100 cars per day, but a car is defective with probability 0.02. What’s the proba-
bility that the factory produces 2 or more defective cars on a given day?

Solution Let X be the number of defective cars that the factory produces. X ∼ Bin(100, 0.02), so

P (X ≥ 2) = 1− P (X = 0)− P (X = 1) [complement]

= 1−
(

100

0

)
(0.02)0 (1− 0.02)100 −

(
100

1

)
(0.02)1 (1− 0.02)99 [plug in binomial PMF]

≈ 0.5967

So, there is about a 60% chance that 2 or more cars produced on a given day will be defective.

3.4.4 Exercises

1. An elementary school wants to keep track of how many of their 200 students have acceptable attendance.
Each student shows up to school on a particular day with probability 0.85, independently of other days
and students.

(a) A student has acceptable attendance if they show up to class at least 4 out of 5 times in a school
week. What is the probability a student has acceptable attendance?

(b) What is the probability that at least 170 out of the 200 students have acceptable attendance?
Assume students’ attendance are independent since they live separately.

(c) What is the expected number of students with acceptable attendance?

Solution: Actually, this is a great question because it has nested binomials!

(a) Let X be the number of school days a student shows up in a school week. Then, X ∼ Bin(n =
5, p = 0.85) since a students’ attendance on different days is independent as mentioned earlier.
We want X ≥ 4,

P (X ≥ 4) = P (X = 4) + P (X = 5) =

(
5

4

)
0.8540.151 +

(
5

5

)
0.8550.150 = 0.83521

.

(b) Let Y be the number of students who have acceptable attendance. Then, Y ∼ Bin(n = 200, p =
0.83521) since each students’ attendance is independent of the rest. So,

P (Y ≥ 170) =

200∑
k=170

(
200

k

)
0.83521k(1− 0.83521)200−k ≈ 0.3258

(c) We have E [Y ] = np = 200 · 0.83521 = 167.04 as the expected number of students! We can just
cite it now that we’ve identified Y as being Binomial!

2. [From Stanford CS109] When sending binary data to satellites (or really over any noisy channel) the
bits can be flipped with high probabilities. In 1947 Richard Hamming developed a system to more
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reliably send data. By using Error Correcting Hamming Codes, you can send a stream of 4 bits with 3
(additional) redundant bits. If zero or one of the seven bits are corrupted, using error correcting codes,
a receiver can identify the original 4 bits. Let’s consider the case of sending a signal to a satellite where
each bit is independently flipped with probability p = 0.1. (Hamming codes are super interesting. It’s
worth looking up if you haven’t seen them be- fore! All these problems could be approached using a
binomial distribution (or from first principles).)

(a) If you send 4 bits, what is the probability that the correct message was received (i.e. none of the
bits are flipped).

(b) If you send 4 bits, with 3 (additional) Hamming error correcting bits, what is the probability that
a correctable message was received?

(c) Instead of using Hamming codes, you decide to send 100 copies of each of the four bits. If for
every single bit, more than 50 of the copies are not flipped, the signal will be correctable. What
is the probability that a correctable message was received?

Solution:

(a) We have X ∼ Bin(n = 4, p = 0.9) to be the number of correct (unflipped) bits. So the binomial
PMF says:

P (X = 4) =

(
4

4

)
0.94(0.1)4−0 = 0.94 = 0.656

Note we could have also approached this by letting Y ∼ Bin(4, 0.1) be the number of corrupted
(flipped) bits, and computing P (Y = 0). This is the same result!

(b) Let Z be the number of corrupted bits, then Z ∼ Bin(n = 7, p = 0.1), so we can use its PMF. A
message is correctable if Z = 0 or Z = 1 (mentioned above), so

P (Z = 0) + P (Z = 1) =

(
7

0

)
0.170.90 +

(
7

1

)
0.160.91 = 0.850

This is a 30% (relative) improvement compared to above by just using 3 extra bits!

(c) For i = 1, . . . , 4, let Xi ∼ Bin(n = 100, p = 0.9). We need X1 > 50, X2 > 50, X3 > 50, and
X4 > 50 for us to get a correctable message. For Xi > 50, we just sum the binomial PMF from
51 to 100:

P (Xi > 50) =

100∑
k=51

(
100

k

)
0.9k(1− p)100−k

Then, since we need all 4 to work, by independence, we get

P (X1 > 50, X2 > 50, X3 > 50, X4 > 50) = P (X1 > 50)P (X2 > 50)P (X3 > 50)P (X4 > 50)

=

(
100∑
k=51

(
100

k

)
0.9k(1− p)100−k

)4

> 0.999

But this required 400 bits instead of just the 7 required by Hamming codes! This is well worth
the tradeoff.

3. Suppose A and B are random, independent (possibly empty) subsets of {1, 2, ..., n}, where each subset
is equally likely to be chosen. Consider A∩B, i.e., the set containing elements that are in both A and
B. Let X be the random variable that is the size of A ∩B. What is E [X]?
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Solution: Then, X ∼ Bin
(
n, 1

4

)
, so E [X] = n

4 (since we know the expected value of Bin(n, p)
is np). How did we do that??

Choosing a random subset of {1, . . . , n} can be thought of as follows: for each element i = 1, . . . , n,
with probability 1/2 take the element (and with probability 1/2 don’t take it), independently of other
elements. This is a crucial observation.

For each element i = 1, . . . , n, the element is either in A∩B or not. So let Xi be the indicator/Bernoulli
rv of whether i ∈ A ∩B or not. Then, P (Xi = 1) = P (i ∈ A, i ∈ B) = P (i ∈ A)P (i ∈ B) = 1

2 ·
1
2 = 1

4
because A,B are chosen independently, and each element is in A or B with probability 1/2. Note that
these Xi’s are independent because one element being in the set does not affect another element being
in the set. Hence, X =

∑n
i=1 Xi the number of elements in our intersection, so X ∼ Bin

(
n, 1

4

)
and

E [X] = np = n
4 .

Note that it was not necessary that these variables were independent; we could have still applied
linearity of expectation anyway to get n

4 . We just wouldn’t have been able to say X ∼ Bin
(
n, 1

4

)
.
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