
Chapter 4. Continuous Random Variables

4.1: Continuous Random Variables Basics
Slides (Google Drive) Alex Tsun Video (YouTube)

Up to this point, we have only been talking about discrete random variables - ones that only take values
in a countable (finite or countably infinite) set like the integers or a subset. What if we wanted to model
quantities that were continuous - that could take on uncountably infinitely many values? If you haven’t
studied or seen cardinality (or types of infinities) before, you can think of this as being intervals of the real
line, which take decimal values. Our tools from the previous chapter were not suitable to modelling these
situations, and so we need a new type of random variable.

Definition 4.1.1: Continuous Random Variables

A continuous random variable is a random variable that takes values from an uncountably infinite
set, such as the set of real numbers or an interval. For e.g., height (5.6312435 feet, 6.1123 feet, etc.),
weight (121.33567 lbs, 153.4642 lbs, etc.) and time (2.5644 seconds, 9321.23403 seconds, etc.) are
continuous random variables that take on values in a continuum.

Why do we need continuous random variables?

Suppose we want a random number in the interval [0, 10], with each possibility being “equally likely”.

• What is P (X = 3.141592) for such a random variable X? That is, if I chose a random decimal number
(with infinite precision/decimal places), what is the probability you guess it exactly right (matching
infinitely many decimal places)? The probability is actually 0, it’s not even a tiny positive number!

• What is P (5 ≤ X ≤ 8) for such a random variable X? That is, what if you were allowed to guess a
range instead of a single number? As you might expect, size of the required interval

size of the total interval = 3
10 since the random

number is uniformly distributed.

Suppose we want to study the set of possible heights (in feet) a person can have, supposing that the range
of possible heights is the interval [1, 8].

• What is the probability that someone has a height of 5.2311333 feet? This is again 0, since you have
to be exactly precise!

• What is the probability that someone has a height between 5 and 6 feet? This is non-zero, since we
are studying an interval. It isn’t necessarily 6−5

8−1 = 1
7 though since heights aren’t necessarily uniformly

distributed! More people will have heights in the interval [4, 6] feet than say [1, 3] feet.

Notice, that since these values can have infinite precision, the probability that a variable has a specific value
is 0, in contrast to discrete random variables.
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4.1.1 Probability Density Functions (PDFs)

Every continuous random variable has a probability density function (PDF), instead of a probability mass
function (PMF), that defines the relative likelihood that a random variable X has a particular value. Why
do we need this new construct? We already said that P (X = a) = 0 for any value of a, and so a “PMF” for
a continuous random variable would equal 0 for any input and be useless. It wouldn’t satisfy the constraint
that the sum of the probabilities is 1 (assuming we could even sum over uncountably many values; we can’t).
Instead, we have the idea of a probability density function where the x-axis has values in the random variable’s
range (usually an interval), and the y-axis has the probability density (not mass), which is explained below.

A PDF may look something like this:

The probability density function fX has some characteristic properties (denoted with fX to distinguish from
PMFs pX). Notice again I will use different dummy variables inside the function like fX(z) or fX(t) to
ensure you get the idea that the density is fX (subscript indicates for rv X) and the dummy variable can
be anything.

• fX(z) ≥ 0 for all z ∈ R; i.e., it is always non-negative, just like a probability mass function.

•
∫∞
−∞ fX(t)dt = 1; i.e., the area under the entire curve is equal to 1, just like the sum of all the proba-

bilities of a discrete random variable equals 1.

• P (a ≤ X ≤ b) =
∫ b

a
fX(w)dw; i.e., the probability that X lies in the interval a to b is the area under

the curve from a to b. This is key - integrating fX gives us probabilities.
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• P (X = y) = P (y ≤ X ≤ y) =
∫ y

y
fX(w)dw = 0. The probability of being a particular value is 0, and

NOT equal to the density fX(y) which is nonzero. This is particularly confusing at first.

• P (X ≈ q) = P
(
q − ε

2 ≤ X ≤ q + ε
2

)
≈ εfX(q); i.e., with a small epsilon value, we can obtain a good

rectangle approximation of the area under the curve. The width of the rectangle is ε (from the difference
between q+ ε

2 and q− ε
2 ). The height of the rectangle is fX(q), the value of the probability density func-

tion fX at q. So, the area of the rectangle is εfX(q). This is similar to the idea of Riemann integration.

• P(X≈u)
P(X≈v) ≈

εfX(u)
εfX(v) = fX(u)

fX(v) ; i.e., the PDF tells us ratios of probabilities of being “near” a point. From

the previous point, we know the probabilities of X being approximately u and v, and through algebra,
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we see their ratios. Since the density is twice as high at u as it is at v, it means we are twice as likely
to get a point “near” u as we are to get one “near” v.

Definition 4.1.2: Probability Density Function (PDF)

Let X be a continuous random variable (one whose range is typically an interval or union of intervals).
The probability density function (PDF) of X is the function fX : R → R, such that the following
properties hold:

• fX(z) ≥ 0 for all z ∈ R

•
∫∞
−∞ fX(t) dt = 1

• P (a ≤ X ≤ b) =
∫ b

a
fX(w) dw

• P (X = y) = 0 for any y ∈ R

• The probability that X is close to q is proportional to its density fX(q);

P (X ≈ q) = P
(
q − ε

2
≤ X ≤ q +

ε

2

)
≈ εfX(q)

• Ratios of probabilities of being “near points” are maintained;

P (X ≈ u)

P (X ≈ v)
≈ εfX(u)

εfX(v)
=

fX(u)

fX(v)

4.1.2 Cumulative Distribution Functions (CDFs)

Here is the density function of a “uniform” random variable on the interval [0, 1]:
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We know this is valid, because the area under the curve is the area of a square with side lengths 1, which is
1 · 1 = 1.

We define the cumulative distribution function (CDF) of X to be FX(w) = P (X ≤ w). That is, the all the
area to the left of w in the density function. Note we also have CDFs for discrete random variables, they
are defined exactly the same way (the probability of being less than or equal to a certain value)! They just
don’t usually have a nice closed form like they do for continuous RVs. Note for continuous random variables,
the CDF at w is just the cumulative area to the left of w, which can be found by an integral (the dummy
variable of integration should be different than the input variable w)

FX(w) = P (X ≤ w) =

∫ w

−∞
fX(y)dy

Let’s try to compute the CDF of this uniform random variable on [0, 1]. There are three cases to consider
here.

• If w < 0, FX(w) = 0 since ΩX = [0, 1]. For example, if w = −1, then FX(w) = P (X ≤ −1) = 0 since
there is no chance that X ≤ −1. Formally, there is also no area to the left of w = −1 as you can see
from the PDF above, so the integral evaluates to 0!

• If 0 ≤ w ≤ 1, the area up to w is a rectangle of height 1 and width w (see below), so FX(w) = w.
That is, P (X ≤ w) = w. For example, if w = 0.5, then the probability X ≤ 0.5 is actually just
0.5 since X is just equally likely to be anywhere in ΩX = [0, 1]! Note here we didn’t do an integral
since there are nice shapes, and we sometimes don’t have to! We just looked at the area to the left of w.

• If w > 1, all the area is up to the left of w, so FX(w) = 1. Again, since ΩX = [0, 1] and suppose w = 2,
then FX(w) = P (X ≤ 2) = 1 since X is always between 0 and 1 (X must be less than or equal to 2).
Formally, the cumulative area to the left of w = 2 is 1 (just the area of the square)!
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We can put these conclusions together to show:

FX(w) =

 0 if w < 0
w if 0 ≤ w ≤ 1
1 if w > 0

On a graph, FX(w) looks like this:

The cumulative distribution function has some characteristic properties:

• FX(t) = P (X ≤ t) =
∫ t

−∞ fX(w)dw for all t ∈ R - i.e. the probability that X ≤ t is the area to the
left of t of the density curve.

• You have a function that is defined to be the integral up to a point of a function, so by the Fundamental
Theorem of Calculus, the derivative of the CDF is actually the PDF - i.e. d

duFX(u) = fX(u). This is
probably the most important observation that explains the relationship between PDF and CDF.

• The probability that X is between a and b is the probability that X ≤ b minus the probability that
X ≤ a; i.e., P (a ≤ X ≤ b) = FX(b) − FX(a). For those with an eagle eye, you might have noticed I
lied a little - it should be P (a < X ≤ b). But since P (X = a) = 0, it doesn’t matter!

• FX is always monotone increasing because we are integrating a non-negative function (fX ≥ 0). That
is, if c ≤ d, then FX(c) ≤ FX(d). For example, if c = 2 and d = 5, then P (X ≤ 2) ≤ P (X ≤ 5) because
X ≤ 2 implies that X ≤ 5 automatically.

• As v → −∞, the CDF at v is the probability that X is less than negative infinity which is 0; so the
left-hand limit is 0, i.e. limv→−∞ FX(v) = P (X ≤ −∞) = 0.

• With similar logic to the previous point, limv→+∞ FX(v) = P (X ≤ +∞) = 1.
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Definition 4.1.3: Cumulative Distribution Function (CDF)

Let X be a continuous random variable (one whose range is typically an interval or union of intervals).
The cumulative distribution function (CDF) of X is the function FX : R→ R such that:

• FX(t) = P (X ≤ t) =
∫ t

−∞ fX(w) dw for all t ∈ R

• d
duFX(u) = fX(u)

• P (a ≤ X ≤ b) = FX(b)− FX(a)

• FX is monotone increasing, since fX ≥ 0. That is, FX(c) ≤ FX(d) for c ≤ d.

• limv→−∞ FX(v) = P (X ≤ −∞) = 0

• limv→+∞ FX(v) = P (X ≤ +∞) = 1

Example(s)

Suppose the number of hours that a package gets delivered past noon is modelled by the following
PDF:

fX(x) =


x/10 0 ≤ x ≤ 2

c 2 < x ≤ 6

0 otherwise

Here is a graph of the PDF as described above:

1. What is the range ΩX?

2. What is the value of c that makes fX a valid density function?

3. Find the cumulative distribution function (CDF) of X, FX(x), and make sure to define it
piecewise for any real number x.
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4. What is the probability that the delivery arrives between 2pm and 6pm?

5. What is the expected time that the package arrives at?

Solution

1. The range is all values where the density is nonzero; in our case, that is ΩX = [0, 6] (or (0, 6)), but we
don’t care about single points or endpoints because the probability of being exactly that value is 0.

2. Formally, we need the density function to integrate to 1; that is,∫ ∞
−∞

fX(x)dx = 1

But, the density function is split into three parts, we can split our integral into three. However,
anywhere the density is zero, we will get an integral of zero, so we’ll only set up the two integrals that
are nontrivial: ∫ 2

0

x/10dx +

∫ 6

2

cdx = 1

Solving this equation for c would definitely work. But let’s try to use geometry instead, as we do know
how to compute the area of a triangle and rectangle. So the left integral is the area of the triangle
with base from 0 to 2 and height c, so that area is 2c/2 = c (the area of a triangle is b · h/2). The area
of the rectangle with base from 2 to 6 is 4c. We need the total area of c + 4c = 1, so c = 1/5.

3. Our CDF needs four cases: when x < 0, when 0 ≤ x ≤ 2, when 2 < x ≤ 6, and when x > 6.

(a) The outer cases are usually the easiest ones: if x < 0, then FX(x) = P (X ≤ x) = 0 since X
cannot be less than zero.

(b) If x > 6, then FX(x) = P (X ≤ x) = 1 since X is guaranteed to be at most 6.

(c) For 0 ≤ x ≤ 2, we need the cumulative area to the left of x, which happens to be a triangle with
base x and height x/10, so the area is x2/20. Alternatively, evaluate the integral

FX(x) =

∫ x

−∞
fX(t)dt =

∫ x

0

t/10dt = t2/20

(d) For 2 < x ≤ 6, we have the entire triangle of area 2 · 1/5 · 0.5 = 1/5, but also a rectangle of base
x− 2 and height 1/5, for a total area of 1/5 + 1/5(x− 2) = x/5− 1/5. Alternatively, the integral
would be

FX(x) =

∫ x

−∞
fX(t)dt =

∫ 2

0

t/10dt +

∫ x

2

1/5dt = x/5− 1/5

Again, I skipped all the integral evaluation steps as they are purely computational, but feel free
to verify!

Finally, putting this together gives

FX(x) =


0 x < 0

x2/20 0 ≤ x ≤ 2

x/5− 1/5 2 < x ≤ 6

1 x > 6
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4. Using the formula, we find the area between 2 and 6 to get P (2 ≤ X ≤ 6) =
∫ 6

2
fX(t)dt =

∫ 6

2
1/5dt =

4/5. Alternatively, we can just see the area from 2 to 6 is just a rectangle with base 4 and height 1/5,
so the probability is just 4/5.

We could also use the CDF we so painstakingly computed.

P (2 ≤ X ≤ 6) = FX(6)− FX(2) = (6/5− 1/5)− (22/20) = 1− 1/5 = 4/5

This is just the area to the left of 6, minus the area to the left of 2, which gives us the area between 2
and 6.

5. We’ll use the formula for expectation of a continuous RV, but split into three integrals again due to
the piecewise definition of our density. However, the integral outside the range [0, 6] will evaluate to
zero, so we won’t include it.

E [X] =

∫ ∞
−∞

xfX(x)dx =

∫ 2

0

xfX(x)dx +

∫ 6

2

xfX(x)dx =

∫ 2

0

x · (x/10)dx +

∫ 6

2

x · (1/5)dx

We won’t do the computation because it’s not important, but hopefully you get the idea of how similar
this is to the discrete version!

4.1.3 From Discrete to Continuous

Here is a nice summary chart of how similar the formulae for continuous RVs and discrete RVs are! Note
that to compute the expected value of a discrete random variable, we took a weighted sum of each value
multiplied by its probability. For continuous random variables though, we take an integral of each value
multiplied by its density function! We’ll see some examples below.

Discrete Continuous

PMF/PDF pX(x) = P (X = x) fX(x) 6= P (X = x) = 0

CDF FX(x) =
∑

t≤x pX(t) FX(x) =
∫ x

−∞ fX(t) dt

Normalization
∑

x pX(x) = 1
∫∞
−∞ fX(x)dx = 1

Expectation/LOTUS E[g(X)] =
∑

x g(x)pX(x) E[g(X)] =
∫∞
−∞ g(x)fX(x)dx

4.1.4 Exercises

1. Suppose X is continuous with density

fX(x) =

{
cx2 0 ≤ x ≤ 9

0 otherwise

Write an expression for the value of c that makes X a valid pdf, and set up expressions (integrals) for
its mean and variance. Also, find the cdf of X, FX .



10 Probability & Statistics with Applications to Computing 4.1

Solution: We need the total area under the curve to be 1, so

1 =

∫ ∞
−∞

fX(y)dy =

∫ 9

0

cy2dy = c

[
1

3
y3
]9
0

= c
729

3
= 243c

Hence, c = 1
243 . The expected value is the weighted average of each point weighted by its density, so

E [X] =

∫ ∞
−∞

zfX(z)dz =

∫ 9

0

z
1

243
z2dz =

1

243

∫ 9

0

z3dz

Similarly, by LOTUS,

E
[
X2
]

=

∫ ∞
−∞

z2fX(z)dz =

∫ 9

0

z2
1

243
z2dz =

1

243

∫ 9

0

z4dz

Finally, we can set
Var (X) = E

[
X2
]
− E [X]

2

For the CDF, we know that

FX(t) = P (X ≤ t) =

∫ t

−∞
fX(y)dy

We actually have three cases, similar to the example earlier. If t < 0, FX(t) = 0 since there’s no way
to get a negative number (the range is ΩX = [0, 9]). If t > 9, FX(t) = 1 since we are guaranteed to get
a number less than t. And for 0 ≤ t ≤ 9, we just do a normal integral to get that

FX(t) = P (X ≤ t) =

∫ t

−∞
fX(s)ds =

∫ 0

−∞
fX(s)ds +

∫ t

0

fX(s)ds = 0 +

∫ t

0

cs2ds =
c

3
t3

Putting this together gives:

FX(t) =


0 t < 0
c
3 t

3 0 ≤ t ≤ 9

1 t > 9

2. Suppose X is continuous with pdf

fX(x) =

{
c
x2 1 ≤ x ≤ ∞
0 otherwise

Write an expression for the value of c that makes X a valid pdf, and set up expressions (integrals) for
its mean and variance. Also, find the cdf of X, FX .

Solution: We need the total area under the curve to be 1, so

1 =

∫ ∞
−∞

fX(y)dy =

∫ ∞
1

c

y2
dy = −c

[
1

y

]∞
1

= −c(0− 1) = c

Hence, c = 1. The expected value is the weighted average of each point weighted by its density, so

E [X] =

∫ ∞
−∞

zfX(z)dz =

∫ ∞
1

z · 1

z2
dz =

∫ ∞
1

1

z
dz = [ln(z)]∞1 =∞



4.1 Probability & Statistics with Applications to Computing 11

Actually, the mean and variance are undefined (since they are infinite)! If the integral for E [X] did
not converge, then the integral for E

[
X2
]

had no chance either (try it)! For the cdf, we know that

FX(t) = P (X ≤ t) =

∫ t

−∞
fX(y)dy

We actually have two cases. If t < 1, FX(t) = 0 since there’s no way to get a number less than 1 (the
range is ΩX = [1,∞)). For t > 1, we just do a normal integral to get that

FX(t) = P (X ≤ t) =

∫ t

−∞
fX(s)ds =

∫ 1

−∞
fX(s)ds+

∫ t

1

fX(s)ds =

∫ t

1

1

s2
ds = −

[
1

s

]t
1

= −
(

1

t
− 1

)
= 1−1

t

Putting this together gives:

FX(t) =

{
0 t < 1

1− 1
t t ≥ 1
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