
Chapter 5. Multiple Random Variables

5.11: Proof of the CLT
Slides (Google Drive) Alex Tsun Video (YouTube)

In this optional section, we’ll prove the Central Limit Theorem, one of the most fundamental and amazing
results in all of statistics, using MGFs!

5.11.1 Properties of Moment Generating Functions

Let’s first recall the properties of MGFs (this is just copied from 5.6):

Theorem 5.11.1: Properties and Uniqueness of Moment Generating Functions

For a function f : R → R, we will denote f (n)(x) to be the nth derivative of f(x). Let X,Y be
independent random variables, and a, b ∈ R be scalars. Then MGFs satisfy the following properties:

1. M ′
X(0) = E [X], M ′′

X(0) = E
[
X2
]
, and in general M

(n)
X = E [Xn]. This is why we call MX a

moment generating function, as we can use it to generate the moments of X.

2. MaX+b(t) = etbMX(at).

3. If X ⊥ Y , then MX+Y (t) = MX(t)MY (t).

4. (Uniqueness) The following are equivalent:

(a) X and Y have the same distribution.

(b) fX(z) = fY (z) for all z ∈ R.

(c) FX(z) = FY (z) for all z ∈ R.

(d) There is an ε > 0 such that MX(t) = MY (t) for all t ∈ (−ε, ε) (they match on a small
interval around t = 0).

That is MX uniquely identifies a distribution, just like PDFs or CDFs do.

5.11.2 Proof of the Central Limit Theorem (CLT)

Here is a restatement of the CLT from 5.7 that we will prove:
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Theorem 5.11.2: The Central Limit Theorem (CLT)

Let X1, . . . Xn be a sequence of independent and identically distributed random variables with mean
µ and (finite) variance σ2. Then, the standardized sample mean approaches the standard Normal
distribution:

As n→∞, Zn =
Xn − µ
σ/
√
n
→ N (0, 1)

Proof of The Central Limit Theorem. Our strategy will be to compute the MGF of Zn and exploit properties
of the MGF (especially uniqueness) to show that it must have a standard Normal distribution!

Suppose µ = 0 (without loss of generality), so:

E
[
X2
i

]
= Var (Xi) + E [Xi]

2
= σ2

Now, let:

Zn =
Xn

σ/
√
n

=
1

σ
√
n

n∑
i=1

Xi

Note there is no typo above: the
1

n
from Xn changes the division by

√
n to a multiplication.

We will show MZn
(t) → et

2/2 (the standard normal MGF) and hence, Zn → N (0, 1) by uniqueness of the
MGF.

1. First, for an arbitrary random variable Y , since the MGF exists in (−ε, ε) under “most” conditions,
we can use the 2nd order Taylor series expansion around 0 (quadratic approximation to a function):

MY (s) ≈MY (0) · s
0

0!
+M ′

Y (0) · s
1

1!
+M ′′

Y (0) · s
2

2!

= E
[
Y 0
]

+ E [Y ] s+ E
[
Y 2
] s2

2
[Since M

(n)
Y (0) = E [Y n]]

= 1 + E [Y ] s+ E
[
Y 2
] s2

2
[Since Y 0 = 1]

2. Now, let MX denote the common MGF of all the Xi’s (since they are iid).

MZn
(t) = M 1

σ
√
n

∑n
i=1Xi

(t) [Definition of Zn]

= M∑n
i=1Xi

(
t

σ
√
n

)
[By Property 2 of MGFs above, where a =

1

σ
√
n
, b = 0]

=

[
MX

(
t

σ
√
n

)]n
[By Property 3 of MGFs above]
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3. Recall Step 1, and now let Y = X and s = t
σ
√
n

so we get a Taylor approximation of MX . Then:

MX

(
t

σ
√
n

)
≈ 1 + E [X]

t

σ
√
n

+ E
[
X2
] ( t

σ
√
n

)2
2

[Step 1]

= 1 + 0 + σ2 t2

2σ2n
[Since E [X] = 0 and E

[
X2
]

= σ2]

= 1 +
t2/2

n

4. Now we combine Steps 2 and 3:

MZn
(t) =

[
MX

(
t

σ
√
n

)]n
[step 2]

≈
(

1 +
t2/2

n

)n
[step 3]

→ et
2/2

[
Since

(
1 +

x

n

)n
→ ex

]
Hence, Zn has the same MGF as that of a standard normal, so must follow that distribution!
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