
Chapter 5. Multiple Random Variables

5.6: Moment Generating Functions
Slides (Google Drive) Alex Tsun Video (YouTube)

Last time, we talked about how to find the distribution of the sum of two independent random variables.
Some of the most important use cases are to prove the results we’ve been using for so long: the sum of
independent Binomials is Binomial, the sum of independent Poissons is Poisson (we proved this in 5.5 using
convolution), etc. We’ll now talk about Moment Generating Functions, which allow us to do these in a
different (and arguably easier) way. These will also be used to prove the Central Limit Theorem (next
section), probably the most important result in all of statistics! Also, to derive the Chernoff bound (6.2).
The point is, these are used to prove a lot of important results. They might not be as direct applicable to
problems though.

5.6.1 Moments

First, we need to define what a moment is.

Definition 5.6.1: Moments

Let X be a random variable and c ∈ R a scalar. Then: The kth moment of X is:

E
[
Xk
]

and the kth moment of X (about c) is:

E
[
(X − c)k

]
The first four moments of a distribution/RV are commonly used, though we have only talked about the first
two of them. I’ll briefly explain each but we won’t talk about the latter two much.

1. The first moment of X is the mean of the distribution µ = E [X]. This describes the center or average
value.

2. The second moment of X about µ is the variance of the distribution σ2 = Var (X) = E
[
(X − µ)2

]
.

This describes the spread of a distribution (how much it varies).

3. The third standardized moment is called skewness E
[(

X−µ
σ

)3
]

and typically tells us about the asym-

metry of a distribution about its peak. If skewness is positive, then the mean is larger than the median
and there are a lot of extreme high values. If skewness is negative, than the median is larger than the
mean and there are a lot of extreme low values.

4. The fourth standardized moment is called kurtosis E
[(

X−µ
σ

)4
]

=
E[X4]
σ4 , which measures how peaked

a distribution is. If the kurtosis is positive, then the distribution is thin and pointy, and if the kurtosis
is negative, the distribution is flat and wide.
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https://docs.google.com/presentation/d/1qUtwD5B37URsRqVPZpoqa3a0iAhvCVB1WUkGsHX5pc4/edit
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5.6.2 Moment Generating Functions (MGFs)

We’ll first define the MGF of a random variable X, and then explain its use cases and importance.

Definition 5.6.2: Moment Generating Functions (MGFs)

Let X be a random variable. The moment generating function (MGF) of X is a function of a
dummy variable t:

MX(t) = E
[
etX
]

If X is discrete, by LOTUS:

MX(t) =
∑
x∈ΩX

etxpX(x)

If X is continuous, by LOTUS:

MX(t) =

∫ ∞
−∞

etxfX(x)dx

We say that the MGF of X exists, if there is a ε > 0 such that the MGF is finite for all t ∈ (−ε, ε),
since it is possible that the sum or integral diverges.

Let’s do some example computations before discussing why it might be useful.

Example(s)

Find the MGF of the following random variables:

(a) X is a discrete random variable with PMF:

pX(k) =

{
1/3 k = 1
2/3 k = 2

(b) Y is a Unif(0, 1) continuous random variable.

Solution

(a)

MX(t) = E
[
etX
]

=
∑
x

etxpX(x) [LOTUS]

=
1

3
et +

2

3
e2t
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(b)

MY (t) = E
[
etY
]

=

∫ 1

0

etyfY (y)dy [LOTUS]

=

∫ 1

0

ety · 1dy [fY (y) = 1, 0 ≤ y ≤ 1]

=
et − 1

t

5.6.3 Properties and Uniqueness of MGFs

There are some useful properties of MGFs that we will discuss. Let X,Y be independent random variables,
and a, b ∈ R be scalars. Then, recall that the moment generating function of X is: MX(t) = E

[
etX
]
.

1. Computing MGF of Linear Transformations: We’ll first see how we can compute the MGF of
aX + b if we know the MGF of X:

MaX+b(t) = E
[
et(aX+b)

]
= etbE

[
e(at)X

]
= etbMX(at)

2. Computing MGF of Sums: We can also compute the MGF of the sum of independent RVs X and Y
given their individual MGFs: (the third step is due to independence):

MX+Y (t) = E
[
et(X+Y )

]
= E

[
etXetY

]
= E

[
etX
]
E
[
etY
]

= MX(t)MY (t)

3. Generating Moments with MGFs: The reason why MGFs are named they way they are, is because
they generate moments of X. That means, they can be used to compute E [X], E

[
X2
]
, E
[
X3
]
, and so on.

How? Let’s take the derivative of an MGF (with respect to t):

M ′X(t) =
d

dt
E
[
etX
]

=
d

dt

∑
x∈ΩX

etxpX(x) =
∑
x∈ΩX

d

dt

(
etxpX(x)

)
=
∑
x∈ΩX

xetxpX(x)

note in the last step that x is a constant with respect to t and so d
dte

tx = xetx.

Note that if evaluate the derivative at t = 0, we get E [X] since e0 = 1:

M ′X(0) =
∑
x∈ΩX

xe0xpX(x) =
∑
x∈ΩX

xpX(x) = E [X]

Now, let’s consider the second derivative:

M ′′X(t) =
d

dt
M ′X(t) =

d

dt

∑
x∈ΩX

xetxpX(x) =
∑
x∈ΩX

d

dt

(
xetxpX(x)

)
=
∑
x∈ΩX

x2etxpX(x)
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If we evaluate the second derivative at t = 0, we get E
[
X2
]
:

M ′′X(0) =
∑
x∈ΩX

x2e0xpX(x) =
∑
x∈ΩX

x2pX(x) = E
[
X2
]

Seems like there’s a pattern - if we take the n-th derivative of MX(t), then we will generate the n-th moment
E [Xn]!

Theorem 5.6.1: Properties and Uniqueness of Moment Generating Functions

For a function f : R → R, we will denote f (n)(x) to be the nth derivative of f(x). Let X,Y be
independent random variables, and a, b ∈ R be scalars. Then MGFs satisfy the following properties:

1. M ′X(0) = E [X], M ′′X(0) = E
[
X2
]
, and in general M

(n)
X = E [Xn]. This is why we call MX a

moment generating function, as we can use it to generate the moments of X.

2. MaX+b(t) = etbMX(at).

3. If X ⊥ Y , then MX+Y (t) = MX(t)MY (t).

4. (Uniqueness) The following are equivalent:

(a) X and Y have the same distribution.

(b) fX(z) = fY (z) for all z ∈ R.

(c) FX(z) = FY (z) for all z ∈ R.

(d) There is an ε > 0 such that MX(t) = MY (t) for all t ∈ (−ε, ε) (they match on a small
interval around t = 0).

That is MX uniquely identifies a distribution, just like PDFs or CDFs do.

We proved the first three properties before stating all the theorems, so all that’s left is property 4. This is
a very complex proof (out of the scope of this course), but we can prove it for a special case.

Proof of Property 4 for a Special Case. We’ll prove that, if X,Y are discrete rvs with range Ω = {0, 1, 2, ...,m}
and whose MGFs are equal everywhere, that pX(k) = pY (k) for all k ∈ Ω. That is, if two distributions have
the same MGF, they have the same distribution (PMF).

For any t, we have
MX(t) = MY (t)

By definition of MGF, we get
m∑
k=0

etkpX(k) =

m∑
k=0

etkpY (k)

Subtracting the right-hand side from both sides gives:

m∑
k=0

etk(pX(k)− pY (k)) = 0

Let ak = pX(k)− pY (k) for k = 0, . . . ,m and write etk as (et)k. Then, we get

m∑
k=0

ak(et)k = 0
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Note that this is an m-th degree polynomial in et, and remember that this equation holds for (uncountably)
infinitely many t. An mth degree polynomial can only have m roots, unless all the coefficients are 0. Hence
ak = 0 for all k, and so pX(k) = pY (k) for all k.

Now we’ll see how to use MGFs to prove some results we’ve been using.

Example(s)

Suppose X ∼ Poi(λ), meaning X has range ΩX = {0, 1, 2, . . . } and PMF:

pX(k) = e−λ
λk

k!

Compute MX(t).

Solution First, let’s recall the Taylor series:

ex =

∞∑
k=0

xk

k!

MX(t) = E
[
etX
]

=

∞∑
k=0

etkpX(k) =

∞∑
k=0

etk · e−λλ
k

k!
= e−λ

∞∑
k=0

(et)k
λk

k!

= e−λ
∞∑
k=0

(λet)k

k!
= e−λeλe

t

[Taylor series with x = λet]

= eλ(et−1)

We can use MGFs in our proofs of certain facts about RVs.

Example(s)

If X ∼ Poi(λ), compute E [X] using its MGF we computed earlier MX(t) = eλ(et−1).

Solution We can prove that E [X] = λ as follows.

First we take the derivative of the moment generating function (don’t forget the chain rule of calculus) and
see that:

M ′X(t) = eλ(et−1) · λet

Then, we know that:

E [X] = M ′X(0) = eλ(e0−1) · λe0 = λ
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Example(s)

If Y ∼ Poi(γ) and Z ∼ Poi(µ) and Y ⊥ Z, show that Y + Z ∼ Poi(γ + µ) using the uniqueness
property of MGFs. (Recall we did this exact problem using convolution in 5.5).

Solution First note that a Poi(γ + µ) RV has MGF e(γ+µ)(et−1) (just plugging in γ + µ as the parameter).
Since Y and Z are independent, by property 3,

MY+Z(t) = MY (t)MZ(t) = eγ(et−1)eµ(et−1) = e(γ+µ)(et−1)

The MGF of Y + Z which we computed is the same as that of Poi(γ + µ). So, by the uniqueness of MGFs
(which implies that an MGF can uniquely describe a distribution), Y + Z ∼ Poi(γ + µ).

Which way was easier for you - this approach or using convolution? MGF’s have limitations though whereas
convolution doesn’t (besides independence) - we need to compute the MGF of Y,Z but we also need to know
the MGF of what distribution we are trying to “get”.

Example(s)

Now, use MGFs to prove the closure properties of Gaussian RVs (which we’ve been using without
proof).

• If V ∼ N (µ, σ2) and W ∼ N (ν, γ2) are independent, that V +W ∼ N (µ+ ν, σ2 + γ2).

• If a, b ∈ R are constants and X ∼ N (µ, σ2), show that aX + b ∼ N (aµ+ b, a2σ2).

You may use the fact that if Y ∼ N (µ, σ2), that

MY (t) =

∫ ∞
−∞

ety
1

σ
√

2π
e−

(y−µ)2

2σ2 dy = eµt+
σ2t2

2

Solution

• If V ∼ N (µ, σ2) and W ∼ N (ν, γ2) are independent, we have the following:

MV+W (t) = MV (t)MW (t) = eµt+
σ2t2

2 eνt+
γ2t2

2 = e(µ+ν)t+
(σ2+γ2)t2

2

This is the MGF of a Normal distribution with mean µ + ν and variance σ2 + γ2. So, by uniqueness
of MGFs, Y + Z ∼ N (µ+ v, σ2 + γ2).

• Let us examine the moment generating function for aX + b. (We’ll use the notation exp(z) = ez so
that we can actually see what’s in the exponent clearly):

MaX+b(t) = ebtMX(at) = exp(bt) exp

(
µ(at) +

σ2(at)2

2

)
= exp

(
(aµ+ b)t+

(a2σ2)t2

2

)
Since this is the moment generating function for a RV that is N (aµ+ b, a2σ2), we have shown that by
the uniqueness of MGFs that aX + b ∼ N (aµ+ b, a2σ2).
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