
Chapter 5. Multiple Random Variables

5.9: The Multivariate Normal Distribution
Slides (Google Drive) Alex Tsun Video (YouTube)

In this section, we will generalize the Normal random variable, the most important continuous distribution!
We were able to find the joint PMF for the Multinomial random vector using a counting argument, but how
can we find the Multivariate Normal density function? We’ll start with the simplest case, and work from
there.

5.9.1 The Special Case of Independent Normals

Suppose X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) are independent normal RVs.

Then by independence, their joint PDF is (recall that exp(z) is just another way to write ez):
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The mean vector µ is given by:

µ =

[
µX

µY

]
And the covariance matrix Σ is given by:

Σ =

[
σ2
X 0
0 σ2

Y

]
Then, we say that (X,Y ) has a bivariate Normal distribution, which we will denote:

(X,Y ) ∼ N2(µ,Σ)

This is nice and all, if we have two independent Normals. But what if they aren’t independent?

5.9.2 The Bivariate Normal Distribution

We’ll now see how we can construct the joint PDF of two (possibly dependent) Normal RVs, to get the
Bivariate Normal PDF.

Definition 5.9.1: The Bivariate Normal Distribution

Let Z1, Z2 ∼ N (0, 1) be iid standard Normals, and µX , µY , σ
2
X > 0, σ2

Y > 0 and −1 ≤ ρ ≤ 1 be scalar
parameters. We construct from these two RVs a random vector (X,Y ) by the transformations:

1. We construct X by taking Z1, multiplying it by σX , and adding µX :

X = σXZ1 + µX
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2. We construct Y from both Z1 and Z2, as shown below:

Y = σY (ρZ1 +
√

1− ρ2Z2) + µY

From this transformation, we get that marginally (show this by computing the mean and variance
of X,Y and closure properties of Normal RVs),

X ∼ N (µX , σ
2
X) Y ∼ N (µY , σ

2
Y )

Additionally,

ρ(X,Y ) = ρ =
Cov (X,Y )√
Var (X)Var (Y )

=
Cov (X,Y )

σXσY
⇒ Cov (X,Y ) = ρσXσY

That is, for the the RVTR (X,Y ),

µ =

[
µX

µY

]
Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]

By using the multivariate change-of-variables formula from 4.4, we can turn the ”simple”
product of standard normal PDFs into the PDF of the bivariate Normal:

fX,Y (x, y) =
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Finally, we write:
(X,Y ) ∼ N2(µ,Σ)

The visualization below shows the density of a bivariate Normal distribution. On the xy-plane, we have the
actual two Normas, and on the z-axis, we have the density. Marginally, both variables are Normals!
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Now let’s take a look at the effect of different covariance matrices Σ on the distribution for a bivariate
normal, all with mean vector (0, 0). Each row below modifies one entry in the covariance matrix; see the
pictures graphically to explore how the parameters change the shape!



5.9 Probability & Statistics with Applications to Computing 5

5.9.3 The Multivariate Normal Distribution

Definition 5.9.2: The Multivariate Normal Distribution

A random vector X = (X1, ..., Xn) has a multivariate Normal distribution with mean vector µ ∈ Rn

and (symmetric and positive-definite) covariance matrix Σ ∈ Rn×n, written X ∼ Nn(µ,Σ), if it has
the following joint PDF:

fX(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
, x ∈ Rn

While this PDF may look intimidating, if we recall the PDF of a univariate Normal W ∼ N (µ, σ2):

fW (w) =
1√

2πσ2
exp

(
− 1

2σ2
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)
We can note that the two formulae are quite similar; we simply extend scalars to vectors and matrices!

Additionally, let us recall that for any RVs X and Y :

X ⊥ Y → Cov (X,Y ) = 0

If X = (X1, . . . , Xn) is Multivariate Normal, the converse also holds:

Cov (Xi, Xj) = 0 → Xi ⊥ Xj

Unfortunately, we cannot do example problems as they would require a deeper knowledge of linear algebra,
which we do not assume.
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