
Chapter 6. Concentration Inequalities

6.1: Markov and Chebyshev Inequalities
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When reasoning about some random variable X, it’s not always easy or possible to calculate/know its ex-
act PMF/PDF. We might not know much about X (maybe just its mean and variance), but we can still
provide concentration inequalities to get a bound of how likely it is for X to be far from its mean µ
(of the form P (|X − µ| > α)), or how likely for this random variable to be very large (of the form P (X ≥ k)).

You might ask when we would only know the mean/variance but not the PMF/PDF? Some of our dis-
tributions that we use (like Exponential for bus waiting time), are just modelling assumptions and are
probably incorrect. If we measured how long it took for the bus to arrive over many days, we could estimate
its mean and variance! That is, we have no idea the true distribution of daily bus waiting times but can
get good estimates for the mean and variance. We can use these concentration inequalities to bound the
probability that we wait too long for a bus knowing just those two quantities and nothing else!

6.1.1 Markov’s Inequality

We’ll start with our weakest inequality, Markov’s inequality. This one only requires us to know the mean, and
nothing else! Again, if we didn’t know the PMF/PDF of what we cared about, we could use the sample mean
as a good estimate for the true mean (by the Law of Large Numbers from 5.7), and our inequality/bound
would be pretty accurate still!
This first example will help build intuition for why Markov’s inequality is true.

Example(s)

The score distribution of an exam is modelled by a random variable X with range ΩX = [0, 110] (with
10 points for extra credit). Give an upper bound on the proportion of students who score at least
100 when the average is 50? When the average is 25?

Solution What would you guess? If the average is E [X] = 50, an upper bound on the proportion of students
who score at least 100 should be 50% right? If more than 50% of students scored a 100 (or higher), the
average would already be 50% since all scores must be nonnegative (≥ 0). Mathematically, we just argued
that:

P (X ≥ 100) ≤ E [X]
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100
=

1

2

This sounds reasonable - if say 70% of the class were to get 100 or higher, the average would already be at
least 70%, even if everyone else got a zero. The best bound we can get is 50% - and that requires everyone
else to get a zero.

If the average is E [X] = 25, an upper bound on the proportion of students who score at least 100 is:

P (X ≥ 100) ≤ E [X]
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https://docs.google.com/presentation/d/1NH59MN8dv5AHdVyj8I-NWi1l-UzG_PeJOkwJ6bivv20/edit
https://www.youtube.com/watch?v=Rd8LQbXhWvM&list=PLeB45KifGiuHesi4PALNZSYZFhViVGQJK&index=31&ab_channel=5MinuteAI
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Similarly, if we had more than 30% students get 100 or higher, the average would already be at least 30%,
even if everyone else got a zero.

That’s literally the entirety of the idea for Markov’s inequality.

Theorem 6.1.1: Markov’s Inequality

Let X ≥ 0 be a non-negative random variable (discrete or continuous), and let k > 0. Then:

P (X ≥ k) ≤ E [X]

k

Equivalently (plugging in kE [X] for k above):

P (X ≥ kE [X]) ≤ 1

k

Proof of Markov’s Inequality. Below is the proof when X is continuous. The proof for discrete RVs is similar
(just change all the integrals into summations).

E [X] =

∫ ∞
0

xfX(x)dx [because X ≥ 0]

=

∫ k

0

xfX(x)dx+

∫ ∞
k

xfX(x)dx [split integral at some 0 ≤ k ≤ ∞]

≥
∫ ∞
k

xfX(x)dx

[∫ k

0

xfX(x)dx ≥ 0 because k ≥ 0, x ≥ 0 and fX(x) ≥ 0

]

≥
∫ ∞
k

kfX(x)dx [because x ≥ k in the integral]

= k

∫ ∞
k

fX(x)dx

= kP (X ≥ k)

So just knowing that the random variable is non-negative and what its expectation is, we can bound the
probability that it is “very large”. We know nothing else about the exam distribution! Note there is no bound
we can derive if X could be negative. Always check that X is indeed nonnegative before applying this bound!

The following example demonstrates how to use Markov’s inequality, and how loose it can be in some cases.

Example(s)

A coin is weighted so that its probability of landing on heads is 20%, independently of other flips.
Suppose the coin is flipped 20 times. Use Markov’s inequality to bound the probability it lands on
heads at least 16 times.

Solution We actually do know this distribution; the number of heads is X ∼ Bin(n = 20, p = 0.2). Thus,
E [X] = np = 20 · 0.2 = 4. By Markov’s inequality:

P (X ≥ 16) ≤ E[X]

16
=

4

16
=

1

4
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Let’s compare this to the actual probability that this happens:

P (X ≥ 16) =

20∑
k=16

(
20

k

)
0.2k · 0.820−k ≈ 1.38 · 10−8

This is not a good bound, since we only assume to know the expected value. Again, we knew the exact
distribution, but chose not to use any of that information (the variance, the PMF, etc.).

Example(s)

Suppose the expected runtime of QuickSort is 2n log(n) operations/comparisons (we can show this
using linearity of expectation with dependent indicator variables). Use Markov’s inequality to bound
the probability that QuickSort runs for longer than 20n log(n) time.

Solution Let X be the runtime of QuickSort, with E [X] = 2n log(n). Then, since X is non-negative, we can
use Markov’s inequality:

P (X ≥ 20n log(n)) ≤ E [X]

20n log(n)
[Markov’s inequality]

=
2n log(n)

20n log(n)

=
1

10

So we know there’s at most 10% probability that QuickSort takes this long to run. Again, we can get this
bound despite not knowing anything except its expectation!

6.1.2 Chebyshev’s Inequality

Chebyshev’s inequality unlike Markov’s inequality does not require that the random variable is non-negative.
However, it also requires that we know the variance in addition to the mean. The goal of Chebyshev’s in-
equality is to bound the probability that the RV is far from its mean (in either direction). This generally
gives a stronger bound than Markov’s inequality; if we know the variance of a random variable, we should
be able to control how much if deviates from its mean better!

We’ll actually prove the Weak Law of Large Numbers as well!

Theorem 6.1.2: Chebyshev’s Inequality

Let X be any random variable with expected value µ = E[X] and finite variance Var (X). Then, for
any real number α > 0:

P (|X − µ| ≥ α) ≤ Var (X)

α2

Equivalently (plugging in kσ for α above, where σ =
√

Var (X)):

P (|X − µ| ≥ kσ) ≤ 1

k2

This is used to bound the probability of being in the tails. Here is a picture of Chebyshev’s inequality
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bounding the probability that a Gaussian X ∼ N (µ, σ2) is more than k = 2 standard deviations from its
mean:

Proof of Chebyshev’s Inequality. X is a random variable, so (X−E[X])2 is a non-negative random variable.
Hence, we can apply Markov’s inequality.

P (|X − E [X]| ≥ α) = P
(

(X − E [X])
2 ≥ α2

)
[square both sides]

≤
E
[
(X − E [X])2

]
α2

[Markov’s inequality]

=
Var (X)

α2
[def of variance]

While in principle Chebyshev’s inequality asks about distance from the mean in either direction, it can still
be used to give a bound on how often a random variable can take large values, and will usually give much
better bounds than Markov’s inequality. This is expected, since we also assume to know the variance - and
if the variance is small, we know the RV can’t deviate too far from its mean.

Example(s)

Let’s revisit the example in Markov’s inequality section earlier in which we toss a weighted coin
independently with probability of landing heads p = 0.2. Upper bound the probability it lands on
heads at least 16 times out of 20 flips using Chebyshev’s inequality.

Solution Because X ∼ Bin(n = 20, p = 0.2):

E [X] = np = 20 · 0.2 = 4

and:

Var (X) = np(1− p) = 20 · 0.2 · (1− 0.2) = 3.2

Note that since Chebyshev’s asks about the difference in either direction of the RV from its mean, we
must weaken our statement first to include the probability X ≤ −8. The reason we chose −8 is because
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Chebyshev’s inequality is symmetric about the mean (difference of 12; 4± 12 gives the interval [−8, 16]):

P (X ≥ 16) ≤ P (X ≥ 16 ∪X ≤ −8) [adding another event can only increase probability]

= P (|X − 4| ≥ 12) [def of abs value]

= P (|X − E [X]| ≥ 12) [E [X] = 4]

≤ Var (X)

122
[Chebyshev’s inequality]

=
3.2

122
=

1

45

This is a much better bound than given by Markov’s inequality, but still far from the actual probability.
This is because Chebyshev’s inequality only takes the mean and variance into account. There is so much
more information about a RV than just these two quantities!

We can actually use Chebyshev’s inequality to prove an important result from 5.7: The Weak Law of Large
Numbers. The proof is so short!

6.1.3 Proof of the Weak Law of Large Numbers

Theorem 6.1.3: Weak Law of Large Numbers

Let X1, X2, ...,Xn be a sequence of iid random variables with mean µ. Let Xn = 1
n

∑n
i=1Xi be the

sample mean. Then, Xn converges in probability to µ. That is, for any ε > 0:

lim
n→∞

P
(∣∣Xn − µ

∣∣ > ε
)

= 0

Proof. By the property of the expectation and variance of sample mean consisting of n iid variables: E
[
Xn

]
=

µ and Var
(
Xn

)
= σ2

n (from 5.7). By Chebyshev’s inequality:

lim
n→∞

P
(∣∣Xn − µ

∣∣ > ε
)
≤ lim
n→∞

Var
(
Xn

)
ε2

= lim
n→∞

σ2

nε2
= 0
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