
Chapter 6. Concentration Inequalities

6.2: The Chernoff Bound
Slides (Google Drive) Alex Tsun Video (YouTube)

The more we know about a distribution, the stronger concentration inequality we can derive. We know that
Markov’s inequality is weak, since we only use the expectation of a random variable to get the probability
bound. Chebyshev’s inequality is a bit stronger, because we incorporate the variance into the probability
bound. However, as we showed in the example in 6.1, these bounds are still pretty “loose”. (They are tight
in some cases though).

What if we know even more? In particular, its PMF/PDF and hence MGF? That will allow us to have
an even stronger bound. The Chernoff bound is derived using a combination of Markov’s inequality and
moment generating functions.

6.2.1 The Chernoff Bound for the Binomial Distribution

Here is the idea for the Chernoff bound. We will only derive it for the Binomial distribution, but the same
idea can be applied to any distribution.

Let X be any random variable. etX is always a non-negative random variable. Thus, for any t > 0, using
Markov’s inequality and the definition of MGF:

P (X ≥ k) = P
(
etX ≥ etk

)
[since t > 0. if t < 0, flip the inequality.]

≤
E
[
etX
]

etk
[Markov’s inequality]

=
MX(t)

etk
[def of MGF]

(Note that the first line requires t > 0, otherwise it would change to P
(
etX ≤ etk

)
. This is because et > 1 for

t > 0 so we get something like 2X which is monotone increasing. If t < 0, then et < 1 so we get something
like 0.3X which is monotone decreasing.)

Now the right hand side holds for (uncountably) infinitely many t. For example, if we plugged in t = 0.5 we

might get
MX(t)

etk
= 0.53 and if we plugged in t = 3.26 we might get 0.21. Since P (X ≥ k) has to be less than

all the possible values when plugging in different t > 0, it in particular must be less than the minimum of
all the values.

P (X ≥ k) ≤ min
t>0

MX(t)

etk

This is good - if we can minimize the right hand side, we can get a very tight/strong bound.

We’ll now focus our attention to deriving the Chernoff bound whenX has a Binomial distribution. Everything
above applies generally though.
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Theorem 6.2.1: Chernoff Bound for Binomial Distribution

Let X ∼ Bin(n, p) and let µ = E[X]. For any 0 < δ < 1:
Upper tail bound:

P (X ≥ (1 + δ)µ) ≤ exp

(
−δ

2µ

3

)
Lower tail bound:

P (X ≤ (1− δ)µ) ≤ exp

(
−δ

2µ

2

)
where exp(x) = ex.

The Chernoff bound will allow us to bound the probability that X is larger than some multiple of its mean,
or less than or equal to it. These are the tails of a distribution as you go farther in either direction from the
mean. For example, we might want to bound the probability that X ≥ 1.5µ or X ≤ 0.1µ.

I think it’s completely acceptable if you’d like to not read the proof, as it is very involved algebraically.
You can still use the result regardless!

Proof of Chernoff Bound for Binomial.

If X =
∑n
i=1Xi where X1, X2,...,Xn are iid variables, then since the MGF of the (independent) sum equals

the product of the MGFs. Taking our general result from above and using this fact, we get:

P (X ≥ k) ≤ min
t>0

MX(t)

etk
= min

t>0

∏n
i=1MXi(t)

etk

Let’s derive a Chernoff bound for X ∼ Bin(n, p), which has the form P (X ≥ (1 + δ)µ) for δ > 0. For example
with δ = 4, you may want to bound P (X ≥ 5E [X]).

Recall X =
∑n
i=1Xi where Xi ∼ Ber(p) are iid, with µ = E[X] = np.

MXi(t) = E
[
etXi

]
[def of MGF]

= et·1pXi(1) + et·0pXi(0) [LOTUS]

= pet + 1(1− p) [Xi ∼ Ber(p)]

= 1 + p(et − 1)

≤ ep(e
t−1) [1 + x ≤ ex with x = p(et − 1)]

See here for a pictorial proof that 1 + x ≤ ex for any real number x (just plot the two functions). Alter-
natively, use the Taylor series for ex to argue this. We use this bound for algebra convenience coming up soon.
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Now using the result from earlier and plugging in the MGF for the Ber(p) distribution, we get:

P (X ≥ k) ≤ min
t>0

∏n
i=1MXi(t)

etk
[from earlier]

= min
t>0

(
ep(e

t−1)
)n

etk
[MGF of Ber(p), n times]

= min
t>0

enp(e
t−1)

etk
[algebra]

= min
t>0

eµ(e
t−1)

etk
[µ = np]

For our bound, we want something like P (X ≥ (1 + δ)µ), so our k = (1 + δ)µ. To minimize the RHS and
get the tightest bound, the best bound we get is by choosing t = ln(1 + δ) after some terrible algebra (take
the derivative and set to 0). We simply plug in k and our optimal value of t to the above equation:

P (X ≥ (1 + δ)µ) ≤ eµ(eln (1+δ)−1)

e(1+δ)µ ln (1+δ)
=

eµ((1+δ)−1)(
eln (1+δ)

)(1+δ)µ =
eδµ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)(1+δ)

)µ
Again, we wanted to choose t that minimizes our upper bound for the tail probability. Taking the derivative
with respect to t tells us we should plug in t = ln(1 + δ) to minimize that quantity. This would actually be
pretty annoying to plug into a calculator.

We actually can show that the final RHS is ≤ exp

(
−δ2µ
2 + δ

)
with some more messy algebra. Additionally, if

we restrict 0 < δ < 1, we can simplify this even more to the bound provided earlier:

P (X ≥ (1 + δ)µ) ≤ exp

(
−δ2µ

3

)

The proof of the lower tail is entirely analogous, except optimizing over t < 0 when the inequality flips. It
proceeds by taking t = ln(1− δ).

We also get a lower tail bound:

P (X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ
≤
(

e−δ

e−δ+
δ2

2

)µ
= exp

(
−δ2µ

2

)
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You may wonder, why are we bounding P (X ≥ (1 + δ)µ), when we can just sum the PMF of a binomial to
get an exact answer? The reason is, it is very computationally expensive to compute the binomial PMF! For
example, if X ∼ Bin(n = 20000, p = 0.1), then by plugging in the PMF, we get

P (X = 13333) =

(
20000

13333

)
0.1133330.920000−13333 =

20000!

13333!(20000− 13333)!
0.1133330.920000−13333

(Actually, n = 20000 isn’t even that large.) You have to multiply 20,000 numbers on the second two terms,
and it multiplies to a number that is infinitesimally small. For the first term (binomial coefficient), computing
20000! is impossible - in fact, it is so large you can’t even imagine. You would have to cleverly interleave
multiplying a factorial vs the probability, to keep the value in an acceptable range for the computer. Then,
sum up a bunch of these....

This is why we have/need the Poisson approximation, the Normal approximation (CLT), and the Chernoff
bound for the Binomial!

Example(s)

Suppose X ∼ Bin(500, 0.2). Use Markov’s inequality and the Chernoff bound to bound P (X ≥ 150),
and compare the results.

Solution We have:
E[X] = np = 500 · 0.2 = 150

Var(X) = np(1− p) = 500 · 0.2 · 0.8 = 80

Using Markov’s Inequality:

P (X ≥ 150) ≤ E[X]

150
=

100

150
≈ 0.6667

Using the Chernoff Bound (with δ = 0.5):

P (X ≥ 150) = P (X ≥ (1 + 0.5) · 100) ≤ e− 0.52·100
3 ≈ 0.00024

The Chernoff bound is much stronger! It isn’t a fair comparison necessarily, because the Chernoff bound
required knowing the MGF (and hence the distribution), whereas Markov only required knowing the mean
(and that it was non-negative).

These examples give you an overall comparison of all three inequalities we learned so far!

Example(s)

Suppose the number of red lights Alex encounters each day to work is on average 4.8 (according to
historical trips to work). Alex really will be late if he encounters 8 or more red lights. Let X be the
number of lights he gets on a given day.

1. Give a bound for P (X ≥ 8) using Markov’s inequality.

2. Give a bound for P (X ≥ 8) using Chebyshev’s inequality, if we also assume Var (X) = 2.88.

3. Give a bound for P (X ≥ 8) using the Chernoff bound. Assume that X ∼ Bin(12, 0.4) - that
there are 12 traffic lights, and each is independently red with probability 0.4.



6.2 Probability & Statistics with Applications to Computing 5

4. Compute P (X ≥ 8) exactly using the assumption from the previous part.

5. Compare the three bounds and their assumptions.

1. Since X is nonnegative and we know its expectation, we can apply Markov’s inequality:

P (X ≥ 8) ≤ E [X]

8
=

4.8

8
= 0.6

2. Since we know X’s variance, we can apply Chebyshevs inequality after some manipulation. We have
to do this to match the form required:

P (X ≥ 8) ≤ P (X ≥ 8) + P (X ≤ 1.6) = P (|X − 4.8| ≥ 3.2)

The reason we chose ≤ 1.6 is so it looks like P (|X − µ| ≥ α). Now, applying Chebyshev’s gives:

≤ Var (X)

3.22
=

2.88

3.22
= 0.28125

3. Actually, X ∼ Bin(12, 0.4) also has E [X] = np = 4.8 and Var (X) = np(1 − p) = 2.88 (what a
coincidence). The Chernoff bound requires something of the form P (X ≥ (1 + δ)µ), so we first need
to solve for δ: (1 + δ)4.8 = 8 so that δ = 2/3. Now,

P (X ≥ 8) = P (X ≥ (1 + 2/3) · 4.8) ≤ exp

(
−(2/3)24.8

3

)
≈ 0.4911

4. The exact probabiltity can be found summing the Binomial PMF:

P (X ≥ 8) =

12∑
k=8

(
12

k

)
0.4k0.612−k ≈ 0.0573

5. Actually it’s usually the case that the bounds are tighter/better as we move down the list Markov,
Chebyshev, Chernoff. But in this case Chebyshev’s gave us the tightest bound, even after being
weakened by including some additional P (X ≤ 1.6). Chernoff bounds will typically be better for
farther tails - 8 isn’t considered too far from the mean 4.8.

It’s also important to note that we found out more information progressively - we can’t blindly apply
all these inequalities every time. We need to make sure the conditions for the bound being valid are
satisfied.

Even our best bound of 0.28125 was 5-6x larger than the true probability of 0.0573.
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