
Chapter 7. Statistical Estimation

7.3: Method of Moments Estimation
Slides (Google Drive) Alex Tsun Video (YouTube)

7.3.1 Sample Moments

Maximum likelihood estimation (MLE) as you saw had a nice intuition but mathematically is a bit tedious
to solve. We’ll learn a different technique for estimating parameters called the Method of Moments (MoM).
The early definitions and strategy may be confusing at first, but we provide several examples which hopefully
makes things clearer!

Recall the definition of a moment from 5.6:

Definition 7.3.1: Moments (Review)

Let X be a random variable and c ∈ R a scalar. Then: The kth moment of X is:

E
[
Xk
]

and the kth moment of X (about c) is:

E
[
(X − c)k

]
Usually, we are interested in the first moment of X: µ = E [X], and the second moment of X about
µ: Var (X) = E

[
(X − µ)2

]
.

Now since we are in the statistics portion of the class, we will define a sample moment.

Definition 7.3.2: Sample Moments

Let X be a random variable, and c ∈ R a scalar. Let x1, . . . , xn be iid realizations (samples) from X.
The kth sample moment of X is

1

n

n∑
i=1

xki

The kth sample moment of X (about c) is

1

n

n∑
i=1

(xi − c)k

For example, the first sample moment is just the sample mean, and the second sample moment
about the sample mean is the sample variance.
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7.3.2 Method of Moments (MoM)

Recall that the first four moments tell us a lot about the distribution (see 5.6). The first moment is the
expectation or mean, and the second moment tells us the variance.

Suppose we only need to estimate one parameter θ (you might have to estimate two for example θ = (µ, σ2)
for the N (µ, σ2) distribution). The idea behind Method of Moments (MoM) estimation is that: to find a
good estimator, we should have the true and sample moments match as best we can. That is, I should choose
the parameter θ such that the first true moment E [X] is equal to the first sample moment x̄. Examples
always make things clearer!

Example(s)

Let’s say x1, x2, . . . , xn are iid samples from X ∼ Unif(0, θ) (continuous). (These values might look
like x1 = 3.21, x2 = 5.11, x3 = 4.33, etc.) What is the MoM estimator of θ?

Solution We then set the first true moment to the first sample moment as follows (recall that
E [Unif(a, b)] = a+b

2 ):

E [X] =
θ

2
=

1

n

n∑
i=1

xi

Solving for θ we get:

θ̂MoM =
2

n

n∑
i=1

xi

That’s all there is to it! Much simpler than MLE right?

This estimator makes sense intuitively once you think about it for a bit: if we take the sample mean of a
bunch of Unif(0, θ) rvs, we expect to get close to the true mean: 1

n

∑n
i=1 xi → θ/2 (by the Law of Large

Numbers). Hence, a good estimator for θ would just be twice the sample mean!

Notice that in this case, the MoM estimator disagrees with the MLE we derived in 7.2!

2

n

n∑
i=1

xi = θ̂MoM 6= θ̂MLE = xmax

What if you had two parameters instead of just one? Well, then you would set the first true moment equal
to the first sample moment (as we just did), but also the second true moment equal to the second sample
moment! We’ll see an example of this below. But basically, if we have k parameters to estimate, we need k
equations to solve for these k unknowns!
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Definition 7.3.3: Method of Moments Estimation

Let x = (x1, . . . , xn) be iid realizations (samples) from probability mass function pX(t; θ) (if X is
discrete), or from density fX(t; θ) (if X continuous), where θ is a parameter (or vector of parameters).

We then define the method of moments (MoM) estimator θ̂MoM of θ = (θ1, . . . , θk) to be
a solution (if it exists) to the k simultaneous equations where, for j = 1, . . . , k, we set the jth (true)
moment equal to the jth sample moment:

E [X] =
1

n

n∑
i=1

xi

. . .

E
[
Xk
]

=
1

n

n∑
i=1

xki

Example(s)

Let’s say x1, x2, . . . , xn are iid samples from X ∼ Exp(θ). (These values might look like x1 =
3.21, x2 = 5.11, x3 = 4.33, etc.) What is the MoM estimator of θ?

Solution We have k = 1 (since only one parameter). We then set the first true moment to the first
sample moment as follows (recall that E [Exp(λ)] = 1

λ ):

E [X] =
1

θ
=

1

n

n∑
i=1

xi

Solving for θ (just taking inverse), we get:

θ̂MoM =
1

1
n

∑n
i=1 xi

Notice that in this case, the MoM estimator agrees with the MLE (Maximum Likelihood Estimator),
hooray!

θ̂MoM = θ̂MLE =
1

1
n

∑n
i=1 xi

Isn’t this way better/easier than MLE?

Example(s)

Let’s say x1, x2, . . . , xn are iid samples from X ∼ Poi(θ). (These values might look like x1 = 13, x2 =
5, x3 = 4, etc.) What is the MoM estimator of θ?

Solution We have k = 1 (since only one parameter). We then set the first true moment to the first
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sample moment as follows (recall that E [Poi(λ)] = λ):

E [X] = θ =
1

n

n∑
i=1

xi

“Solving” for θ, we get:

θ̂MoM =
1

n

n∑
i=1

xi

In this case, again, the MoM estimator agrees with the MLE! Again, much easier than MLE :).

Now, we’ll do an example where there is more than one parameter.

Example(s)

Let’s say x1, x2, . . . , xn are iid samples from X ∼ N (θ1, θ2). (These values might look like x1 =
−2.321, x2 = 1.112, x3 = −5.221, etc.) What is the MoM estimator of the vector θ = (θ1, θ2) (θ1 is
the mean, and θ2 is the variance)?

Solution We have k = 2 (since now we have two parameters θ1 = µ and θ2 = σ2). Notice Var (X) =

E
[
X2
]
− E [X]

2
, so rearranging we get E

[
X2
]

= Var (X) + E [X]
2
. Let’s solve for θ1 first:

Again, we set the first true moment to the first sample moment:

E [X] = θ1 =
1

n

n∑
i=1

xi

“Solving” for θ1, we get:

θ̂1 =
1

n

n∑
i=1

xi

Now let’s use our result for θ̂1 to solve for θ̂2 (recall that E
[
X2
]

= Var (X) + E [X]
2

= θ2 + θ21)

E
[
X2
]

= θ2 + θ21 =
1

n

n∑
i=1

x2i

Solving for θ2, and plugging in our result for θ̂1, we get:

θ̂2 =
1

n

n∑
i=1

x2i −

(
1

n

n∑
i=1

xi

)2

If you were to use maximum likelihood to estimate the mean and variance of a Normal distribution, you
would get the same result!
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