
Chapter 9: Applications to Computing

9.2: Probability via Simulation
Slides (Google Drive) Starter Code (GitHub)

9.2.1 Motivation

Even though we have learned several techniques for computing probabilities, and have more to go, it is still
hard sometimes. Imagine I asked the question: “Suppose I randomly shuffle an array of the first 100 integers
in order: [1, 2, . . . , 100]. What is the probability that exactly 13 end up in their original position?” I’m
not even sure I could solve this problem, and if so, it wouldn’t be pretty to set up nor actually type into a
calculator.

But since you are a computer scientist, you can actually avoid computing hard probabilities! You could
also even verify that your hand-computed answers are correct using this technique of “Probability via Sim-
ulation”.

9.2.2 Probability via Simulation

We first need to define another notion or way of thinking about a probability. If we had some event E, then
we could define P (E) to be the long-term proportion of times that event E occurs in a random experiment.
That is,

of trials where E occured

trials
→ P (E)

as the number of trials goes to ∞.

For example, if E is the event we roll a 4 on a fair six-sided die, the probability is P (E) = 1/6. That means,
if I were to roll this die 6 million times, I should expect to see about 1 million 4’s! In reverse, if I didn’t
know P (E) and wanted to compute it, I could just simulate many rolls of this fair die! Obviously, the more
trials, the better your estimate. But you can’t possibly sit around forever rolling this die - a computer can
do this MUCH faster, simulating millions of trials within seconds.

This also works for averages, in addition to probabilities. I think this topic is best taught by examples, so
we’ll see one of each!

Example(s)

Suppose a weighted coin comes up heads with probability 1/3. How many flips do you think it will
take for the first head to appear? Use code to estimate this average!

Solution You may think it is just 3, and you would be correct! We’ll see how to prove this mathematically
in chapter 3 actually. But for now, since we don’t have the tools to compute it, let’s use our programming
skills!

The first thing we need to do is to simulate a single coin flip. Recall that to generate a random number, we
use the numpy library in Python.

1

https://docs.google.com/presentation/d/1QOam-DRqM8TZrt9eK2VcGYO8VWfpPMuE5HFEpKoZB0g/edit
https://github.com/alextsun/prob_stat_for_cs/tree/main/starter_code/9.2_prob_by_sim

2 Probability & Statistics with Applications to Computing 9.2

1 np.random.rand() # r e t u r n s a s i n g l e f l o a t i n t h e r a n g e [0 , 1)

What about this following line of code?

1 if np.random.rand() < p:

This might be a bit tricky: since np.random.rand() returns a random float between [0, 1), the function
returns a value < p with probability exactly p! For example if p = 1/2, then np.random.rand() < 1/2,
which happens with probability 1/2 right? In our case, we’ll want p = 1/3, which will execute with probability
1/3.

This allows us to simulate the event in question: the first “Heads” appears whenever np.random.rand()

returns a value < p. And, if it is ≥ p, the coin flip turned up “Tails”.

The following function allows us to simulate ONCE how long it took to get heads.

1 def sim one game() −> int: # r e t u r n an i n t e g e r
2 flips = 0
3 while True:
4 flips += 1
5 if np.random.rand() < p:
6 return flips

We start with our number of flips being 0. And we keep incrementing flips until we get a head. So this
should return an integer ! We just need to simulate this game many times (call this function many times),
and take the average of our samples! Then, this should give us a good approximation of the true average
time (which happens to be 3)!

The code above is duplicated below, as a helper function. Python is great because you can define functions
inside other functions, only visible to the parent function!

1 import numpy as np
2
3 def coin flips(p, ntrials=50000) −> float:
4
5 def sim one game() −> int: # i n t e r n a l h e l p e r f u n c t i o n
6 flips = 0
7 while True:
8 flips += 1
9 if np.random.rand() < p:

10 return flips
11
12 total flips = 0
13 for i in range(ntrials):
14 total flips += sim one game()
15 return total flips / ntrials
16
17 print(coin flips(p=1/3))

Notice the helper function is the exact same as above! All we did was call it ntrials times and return the
average number of flips per trial. This is it! The number 50000 is arbitrary: any large number of trials is
good!

9.2 Probability & Statistics with Applications to Computing 3

Now to tackle the original problem:

Example(s)

Suppose I randomly shuffle an array of the first 100 integers in order: [1, 2, . . . , 100]. What is the
probability that exactly 13 end up in their original position? Use code to estimate this probability!
Hint: Use np.random.shuffle to shuffle an array randomly.

Solution Try it yourself before looking at the answer below!

1 import numpy as np
2
3 def prob 13 original(ntrials=50000) −> float:
4
5 def sim one shuffle() −> int: # i n t e r n a l h e l p e r f u n c t i o n
6 arr = np.arange(1, 101) # C r e a t e s a r r a y : [1 , 2 , . . . , 1 0 0]
7 np.random.shuffle(arr)
8
9 num orig = 0 # Coun t how many e l e m e n t s a r e i n o r i g i n a l p o s i t i o n

10 for i in range(1, 101): # 1 , 2 , . . . , 1 0 0
11 if arr[i − 1] == i: # Py t h o n i s 0− i n d e x e d
12 num orig += 1
13
14 return int(num orig == 13) # R e t u r n s 1 i f True , 0 i f F a l s e
15
16
17 num succ = 0 # Coun t how many t i m e s e x a c t l y 13 w e r e i n o r i g i n a l
18 for i in range(ntrials):
19 num succ += sim one shuffle()
20 return num succ / ntrials
21
22 print(prob 13 original())

Take a look and see how similar this was to the previous example!

	Motivation
	Probability via Simulation

