
Chapter 9: Applications to Computing

9.4: Bloom Filters
Slides (Google Drive) Starter Code (GitHub)

9.4.1 Motivation

Google Chrome has a huge database of malicious URLs, but it takes a long time to do a database lookup
(think of this as a typical Set, but on a different computer than yours). As you may know, Sets have
desirable constant-time lookup, but due to the fact it isn’t on your computer, the time bottleneck comes
from the communication between the database and your computer. They want to have a quick check in the
web browser itself (on your computer), so a space-efficient data structure must be used.

That is, we want to save both time (not in the typical big-Oh sense) and space. But what will we trade
for it? It turns out we will have limited operations (fewer than a Set), and some probability of error which
turns out to be fine.

9.4.2 Definition

A bloom filter is a probabilistic data structure which only supports the following two operations:

I. add(x): Add an element x to the structure.

II. contains(x): Check if an element x is in the structure. If either returns “definitely not in the set” or
“could be in the set”.

It does not support the following two operations:

I. Delete an element from the structure.

II. Give a collection of elements that are in the structure.

The idea is that we can check our bloom filter if a URL is in the set. The bloom filter is always correct in
saying a URL definitely isn’t in the set, but may have false positives (it may say a URL is in the set when it
isn’t). So most of the time, we get instant time, and only in these rare cases does Chrome have to perform
an expensive database lookup to know for sure.

Suppose we have k bit arrays t1, . . . , tk each of length m (all entries are 0 or 1), so the total space required
is only km bits or km/8 bytes (as a byte is 8 bits). See below for one with k = 3 arrays of length m = 5:

1

https://docs.google.com/presentation/d/1sOJ6JyxtTIy5CIHw2Rbp8fljiN6WXX9aAX8Wbfhea7w/edit
https://github.com/alextsun/prob_stat_for_cs/tree/main/starter_code/9.4_bloom_filter


2 Probability & Statistics with Applications to Computing 9.4

So regardless of the number of elements n that we want to insert store in our bloom filter, we use the same
amount of memory! That being said, the higher n is for a fixed k and m, the higher your error rate will be.

Suppose the universe of URL’s is the set U (think of this as all strings with less than 100 characters),
and we have k independent and uniform hash functions h1, . . . , hk : U → {0, 1, . . . ,m− 1}. That is, for
an element x and hash function hi, pretend hi(x) is a discrete Unif(0,m − 1) random variable. Basically,
when we see a new URL, we will add it to one random entry per row of our bloom filter.

See the image below to see how we add the URL “thisisavirus.com” into our bloom filter.

For each of our k = 3 hash functions (corresponding to each row), we hash our URL x as hi(x) to get a
random integer from {0, 1, . . . , 4} (0 to m− 1). It happened that h1(x) = 2, h2(x) = 1 and h3(x) = 4 in this
example: each hash function is independent of the others and chooses a position uniformly at random.

But if we hash the same URL, we will get the same hash. In other words, if I tried to add this URL
one more time, nothing would change because all the entries were already set to 1. Notice we never “unset”
an entry: once a URL sets an entry to 1, it will stay 1 forever.

Now let’s see how the contains function is implemented. When we check whether the URL we just added
is contained in the bloom filter, we should definitely return yes.



9.4 Probability & Statistics with Applications to Computing 3

We say that a URL x is contained in the bloom filter, if when we apply each hash function hi(x), the
corresponding entries are already set to 1. We added this URL “thisisavirus.com” right before this, so we
are guaranteed that t1[2] == 1, t2[1] == 1, and t3[4] == 1, and so we return TRUE overall! You might now
see how this could lead to false positives: returning TRUE even though the URL was never added! Don’t
worry if not, we’ll see some examples below.

That’s all there is for bloom filters!

Example(s)

Starting with the current state of the bloom filter above:

1. Add the URL x =“totallynotsuspicious.com” which has h1(x) = 1, h2(x) = 0 and h3(x) = 4.
Draw the resulting bloom filter.

2. Check whether or not the URL “verynormalsite.com” is in the bloom filter, which has h1(x) = 2,
h2(x) = 0 and h3(x) = 4.

Solution

Notice that t3[4] was already set to 1 by the previous entry, and that’s okay! We just leave it set to 1.

Notice here we got a false positive: that means, saying a URL is in the bloom filter when it wasn’t. This
is a tradeoff we make in exchange for using much less space.



4 Probability & Statistics with Applications to Computing 9.4

9.4.3 Analysis

You might be dying to know, what is the false positive rate (FPR) for a bloom filter, and how should I
choose k and m? These are great questions, and we actually have the tools to figure this out already.

Theorem 9.4.1: Bloom Filter FPR

After inserting n distinct URLs to a k×m bloom filter (k hash functions/rows, m columns), suppose
we had a new URL and wanted to check whether it was contained in the bloom filter. The false
positive rate (probability the bloom filter returns True incorrectly), is(

1−
(

1− 1

m

)n)k

Proof of Bloom Filter FPR. We get a match for new URL x if in each row, the bit assigned by the hash
function hi(x) is set to 1.

For i = 1, . . . , k, let Ei be the event that hi(x) is set to 1 already. Then,

P (false positive) = P (h1(x) = 1, h2(x) = 1, . . . , hk(x) = 1) = P (E1 ∩ E2 ∩ · · · ∩ Ek) =

k∏
i=1

P (Ei)

where the last equality is because each hash function is assumed to be independent of the others.

Now, let’s focus on a single row i (all the rows are the “same”). The probability that the bit is set to 1
P (Ei), is the probability that at least one of the n URLs hashed to that entry. Seeing “at least one” should
tell you that: you should try the complement instead (otherwise, use inclusion-exclusion)!

So the probability a bit remains at 0 after n entries are added (EC
i ) is

P
(
EC

i

)
=

(
1− 1

m

)n

because the probability of missing this bit for a single URL is 1− 1/m. Hence,

P (Ei) = 1− P
(
EC

i

)
= 1−

(
1− 1

m

)n

Finally, combining this result with the previous gives our final answer, since each row has the same proba-
bility:

P (false positive) =

k∏
i=1

P (Ei) =

(
1−

(
1− 1

m

)n)k

So based on n, the number of malicious URLs Google Chrome would like to store, should definitely play a
part in how large they should choose k and m to be.

Let’s now see (by example) the kind of time and space improvement we can get.



9.4 Probability & Statistics with Applications to Computing 5

Example(s)

1. Let’s compare this approach to using a typical Set data structure. Google wants to store
5 million URLs, with each URL taking (on average) 40 bytes. How much space (in MB, 1
MB = 1 million bytes) is required if we store all the elements in a set? How much space (in
MB) is required if we store all the elements in a bloom filter with k = 30 hash functions and
m = 900, 000 buckets? Recall that 1 byte = 8 bits.

2. Let’s analyze the time improvement as well. Let’s say an average Chrome user attempts to
visit 102,000 URLs in a year, only 2,000 of which are actually malicious. Suppose it takes
half a second for Chrome to make a call to the database (the Set), and only 1 millisecond for
Chrome to check containment in the bloom filter. Suppose the false positive rate on the bloom
filter is 3%; that is, if a website is not malicious, the bloom filter will will incorrectly report
it as malicious with probability 0.03. What is the time (in seconds) taken if we only use the
database, and what is the expected time taken (in seconds) to check all 102,000 strings if we
used the bloom filter + database combination described earlier?

Solution

1. For the set, we would require 5 million times 40 bytes, for a total of 200 MB.
For the bloom filter, we need just km/8 = 27/8 million bytes, or 3.375 MB, wow! Note how this doesn’t
depend (directly) at all on how many URLs, or the size of each one as we just hash it to a few bits.
Of course, k and m should increase with n though :) to keep the FPR low.

2. If we only use the database, it will take 102, 000 · 12 = 51, 000 seconds.
If we use the bloom filter + database combination, we will definitely call the bloom filter 102, 000 times
at 0.001 seconds each, for a total of 102 seconds. Then for about 3% of the 100, 000 other URLs (3, 000
of them), we’ll have to do a database lookup, costing 3, 000 · 12 = 1, 500 seconds. For the 2, 000 actually
malicious URLs, we also have to do a database lookup, costing 2, 000 · 12 = 1000 seconds . So in total,
102 + 1500 + 1000 = 2602 seconds.

Just take a second to stare at how much memory savings we had (the first part), and the time savings we
had (the second part)!

9.4.4 Summary

Hopefully now you see the pros and cons of bloom filters. We cannot delete from the bloom filter (why?)
nor list out which elements are in it because we never stored the string! Below summarizes the operations
of a bloom filter.



6 Probability & Statistics with Applications to Computing 9.4

Algorithm 1 Bloom Filter Operations

1: function initialize(k,m)
2: for i = 1, . . . , k: do
3: ti = new bit array of m 0’s

4: function add(x)
5: for i = 1, . . . , k: do
6: ti[hi(x)] = 1

7: function contains(x)
return t1[h1(x)] == 1 ∧ t2[h2(x)] == 1 ∧ · · · ∧ tk[hk(x)] == 1

If you imagine coding this up, it’s so short, only a few lines of code! We just saw how probability and
randomness can be used to save space and time, in exchange for accuracy! In our application, we didn’t even
mind the accuracy part because we would just do the lookup in that case just to be certain anyway! We saw
it being used for a data structure, and in our next application, we’ll see it being used for an algorithm.

Randomness just makes our lives (as a computer scientist) better, and can lead to elegant and beautiful data
structures algorithms which often outperform their deterministic counterparts.


	Motivation
	Definition
	Analysis
	Summary

