
Chapter 9: Applications to Computing

9.5: Distinct Elements
Slides (Google Drive) Starter Code (GitHub)

9.5.1 Motivation

YouTube wants to count the number of distinct views for a video, but doesn’t want to store all the user
ID’s. How can they get an accurate count of users without doing so? Note: A user can view their favorite
video several times, but should only be counted as one distinct view.

Before we attempt to solve this problem, you should wonder: why should we even care? For one of the
most popular videos on YouTube, let’s say there are N = 2 billion views, with n = 900 million of them being
distinct views. How much space is required to accurately track this number? Well, let’s assume a user ID is
an 8-byte integer. Then, we need 900, 000, 000 × 8 bytes total if we use a Set to track the user IDs, which
requires 7.2 gigabytes of memory for ONE video. Granted, not too many videos have this many views, but
imagine now how many videos there are on YouTube: I’m not sure of the exact number, but I wouldn’t be
suprised it it was in the tens or hundreds of millions, or even higher!

It would be great if we could get the number of distinct views with constant space O(1) instead of lin-
ear space O(n) required by storing all the IDs (let’s say a single 8-byte floating point number instead of 7.2
GB). It turns out we (approximately) can! There is no free lunch of course - we can’t solve this problem
exactly with constant memory. But we can trade this space for some error in accuracy, using the contin-
uous Uniform random variable! That is, we will potentially have huge memory savings, but are okay with
accepting a distinct view count which has some margin of error.

9.5.2 Intuition

This seemingly unrelated calculation will be crucial in tying our algorithm together - I’ll ask for your patience
as we do this. Let U1, . . . , Um be m iid (independent and identically distributed) RVs from the continuous
Unif(0, 1) distribution. If we take the minimum of these m random variables, what do we “expect” it to be?
That is, if X = min{U1, . . . , Um}, what is E [X]? Before actually doing the computation, let’s think about
this intuitively and see some pictures.

1

https://docs.google.com/presentation/d/1fJxFYTKWLs3Dhl43jFsOosKwIf5sORUGeBjrgNXFS34/edit
https://github.com/alextsun/prob_stat_for_cs/tree/main/starter_code/9.5_distinct_elts

2 Probability & Statistics with Applications to Computing 9.5

• If m = 1 (only one uniform RV), we expect it to be right in the center at 1/2.

• If m = 2 (two continuous uniform RVs), we expect the two points to be at 1/3 and 2/3, with the
minimum being the smaller of the two at 1/3.

• If m = 4, we might expect the four points to be at 1/5, 2/5, 3/5, 4/5, and so the minimum is actually
at 1/5.

See below for more details on the last case where m = 4.

What these examples are getting at is that, the expected value of the smallest of m Unif(0, 1) RVs is

E [X] = E [min{U1, . . . , Um}] =
1

m+ 1

I promise this will be the key observation in making this clever algorithm work. If you believed the intuition
above, that’s great! If not, that’s also fine, so I’ll have to prove it to you formally below. Whether you
believe me or not at this point, you are definitely encouraged to read through the strategy as it may come
up many times in your future.

Theorem 9.5.1: Expectation of Min of IID Uniforms

If U1, . . . , Um ∼ Unif(0, 1) (continuous) are iid (independent and identically distributed), and X =

min{U1, . . . , Um} is their minimum, then E [X] =
1

m+ 1
.

Proof of Expectation of Min of IID Uniforms.

We should start working with probabilities first (e.g., the CDF FX(x) = P (X ≤ x)) and take the derivative
to find the PDF (this is a common strategy for dealing with continuous RVs). Actually, we’ll compute
P (X > x) first (how is this related to the CDF FX?):

P (X > x) = P (min{U1, . . . , Um} > x) [def of X]

= P (U1 > x,U2 > x, . . . , Um > x) [minimum is greater than x iff ALL are]

=

m∏
i=1

P (Ui > x) [independence]

=

m∏
i=1

(1− x) [1−CDF of Unif(0, 1)]]]

= (1− x)m [all have the same distribution]

9.5 Probability & Statistics with Applications to Computing 3

Some of these steps need more justification. For the second equation, we use the fact that the minimum of
numbers is greater than a value if and only if all of them are (think about this). For the next equation, the
probability of all of the Ui > x is just the product of the m probabilities by our independence assumption.

And finally, for Ui ∼ Unif(0, 1), we know its CDF (look it up in our table) is P (Ui ≤ x) =
x− 0

1− 0
= x, and

so P (Ui > x) = 1− P (U1 ≤ x) = 1− x.

Now, we have that
FX(x) = 1− P (X > x) = 1− (1− x)m

I’ll leave it to you to compute the density fX(x) by differentiating the CDF we just computed, and then
using our standard expectation formula (the minimum of numbers in [0, 1] is also in [0, 1]):

E [X] =

∫ 1

0

xfX(x)dx

and you should get E [X] =
1

m+ 1
after all this work!

If you are thinking of giving up now, I promise this was the hardest part! The rest of the section should be
(generally) smooth sailing.

9.5.3 The Algorithm

The problem can be formally modelled as follows: a video receives a stream of 8-byte integers (user ID’s),
x1, x2, . . . , xN , but there are only n distinct elements (1 ≤ n ≤ N), since some people rewatch the video. We
don’t know what N is, since people continuously view the video, but assume we cannot store all N elements;
we can’t even store the n distinct elements.

Suppose the universe of user ID’s is the set U (think of this as all 8-byte integers), and we have a single
uniform hash function h : U → [0, 1] (i.e., for an user ID y, pretend h(y) is a continuous Unif(0, 1) random
variable). That is, h(y1), h(y2), ..., h(yk) for any k distinct elements are iid continuous Unif(0, 1) random
variables, but since the hash function always gives the same output for some given input, h(y1) and h(y1)
are the “same” Unif(0, 1) random variable.

To parse that mess, let’s see two examples. These will also hopefully give us the lightbulb moment!

Example(s)

Suppose we have user IDs watch the video in this order:

13, 25, 19, 25, 19, 19

This is a stream of user IDs. From this, there are 3 distinct views (13,25,19) out of 6 total views.
The uniform hash function h might give us the following stream of hashes:

0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Note that all of these numbers are between 0 and 1 as they should be, as they are supposedly
Unif(0, 1). Note also that for the same user ID, we get the same hash! That is, h(19) will always
return 0.79, h(25) is always 0.26, and so on. Now go back and reread the previous paragraph and see
if it makes more sense.

4 Probability & Statistics with Applications to Computing 9.5

Example(s)

Consider the same stream of N = 6 elements as the previous example, with n = 3 distinct elements.

1. How many independent Unif(0, 1) RVs are there total: N or n?

2. If we only stored the minimum value every time we received a view, we would store the single
floating point number 0.26 as it is the smallest hash of the six. If we didn’t know n, how
might we exploit 0.26 to get the value of n = 3? Hint: Use the fact we proved earlier that

E [min{U1, . . . , Um}] =
1

m+ 1
where U1, . . . , Um are iid.

Solution

1. As you can see, we only have three iid Uniform RVs: 0.26, 0.51, 0.79. So in general, we’ll have
the minimum n (and not N) RVs.

2. Actually, remember that the expected minimum of n distinct/independent values is approxi-

mately
1

n+ 1
as we showed earlier. Our 0.26 isn’t exactly equal to E [X], but it is an estimate

for it! So if we solve

0.26 ≈ E [X] =
1

n+ 1

we would get that n ≈ 1

0.26
− 1 ≈ 2.846. Rounding this to the nearest integer of 3 actually

gives us the correct answer!

So our strategy is: keep a running minimum (a single floating point which ONLY takes 8 bytes).
As we get a stream of user IDs x1, . . . , xN , hash each one and update the running minimum

if necessary. When we want to estimate n, we just reverse solve n = round

(
1

E [X]
− 1

)
, and

that’s it! Take a minute to reread this example if necessary, as this is the entire idea!

Here is the pseudocode for the algorithm we just described:

Algorithm 1 Distinct Elements Algorithm

function initialize()
val←∞

function update(x)
val← min {val, hash(x)}

function estimate()

return round

(
1

val
− 1

)
initialize() . Initialize our single float variable
for i = 1, . . . , N : do . Loop through all stream elements

update(xi) . Update our single float variable
return estimate() . An estimate for n, the number of distinct elements.

This is known as the Distinct Elements algorithm! We start our single floating point minimum (called val
below) at∞, and repeatedly update it. The key observation is that we are only taking the minimum of n iid

9.5 Probability & Statistics with Applications to Computing 5

Uniform RVs, and NOT N because h always returns the same value given the same input. Reverse-solving

for E [X] =
1

m+ 1
gives us an estimate for m since E [X] (which is stored in the variable val) is only an

approximation. Note we want to round to the nearest integer because n should be an integer.

This algorithm sounds great right? One pass over the data (which is the best we can do in time complexity),
and one single float (which is the best we can do in space complexity)! But you have to remember the
tradeoff is in the accuracy, which we haven’t seen yet.

The reason the previous example was spot-on is because I cheated a little bit. I ensured the three values
0.26, 0.51, 0.79 were close to where they were supposed to be: 0.25, 0.50, 0.75. Actually, it’s most important
that just the minimum is on-target. See the following example for an unfortunate situation.

Example(s)

Suppose we have N = 7 user IDs watch the video in this order:

11, 34, 89, 11, 89, 23, 23

The uniform hash function h might give us the following stream of N = 7 hashes:

0.5, 0.21, 0.94, 0.5, 0.94, 0.1, 0.1

Trace the distinct elements algorithm above by hand and report the value that it will return for our
estimate. Compare it to the true value of n = 4 which is unknown to the algorithm.

Solution

At the end of all the updates, val will be equal to the minimum hash of 0.1. So the estimated number of
distinct elements is

round

(
1

0.1
− 1

)
= 9

There are only n = 4 distinct elements though! The reason this time it didn’t work out well for us is that
the minimum value was supposed to be around 1/5 = 0.2, but was actually 0.1. This is not necessarily a
huge difference until we take its reciprocal...

That’s it! The code for this algorithm is actually pretty short and sweet (imagine converting the pseudocode
above into code). If you take a step back and think about what machinery we needed, we needed continuous
RVs: the idea of PDF/CDF, and the Uniform RV. The mathematical/statistical tools we learn have many
applications to computer science; we have several more to go!

9.5.4 Improving Performance (Optional)

You may wonder how we can improve this estimate. The problem is that the variance of the minimum is
pretty high (e.g., it was 0.1 last time instead of 0.2): how can we reduce it? Actually, independent repetitions
is always an excellent strategy (if possible) to get better estimates!

If X1, . . . , Xn are iid RVs with mean µ and variance σ2, we’ll show that the sample mean X̄n =
1

n

∑n
i=1Xi

has the same mean but lower variance as each Xi.

6 Probability & Statistics with Applications to Computing 9.5

E
[
X̄n

]
= E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n
nµ = µ

Also, since the Xi’s are independent, variance adds:

Var
(
X̄n

)
= Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var (Xi) =
1

n2
nσ2 =

σ2

n

That is, the sample mean will have the same expectation, but the variance will go down linearly! Why might
this make sense? Well, imagine you wanted to estimate the height of American adults: would you rather
have a sample of 1, 10, or 100 adults? All would be correct in expectation, but the size of 100 gives us more
confidence in our answer!

So if we instead estimate the minimum E [X] =
1

n+ 1
with the average of k minimums instead of just one,

we should get a more accurate estimate for E [X] and hence n, the number of distinct elements, as well!

So, imagine we had k independent hash functions instead of just one: h1, . . . , hk, and k minimums val1, val2, . . . , valk.

Stream → 13 25 19 25 19 19 vali

h1 0.51 0.26 0.79 0.26 0.79 0.79 0.26
h2 0.22 0.83 0.53 0.84 0.53 0.53 0.22
. .
hk 0.27 0.44 0.72 0.44 0.72 0.72 0.27

Each row represents one hash function hi, and the last column in each row is the minimum for that hash
function. Again, we’re only keeping track of the k floating point minimums in the final column. Now, for
improved accuracy, we just take the average of the k minimums first, before reverse-solving. Imagine k = 3
(so there were no rows in . . . above). Then, a good estimate for the true minimum E [X] is

E [X] ≈ 0.26 + 0.22 + 0.27

3
= 0.25

So our estimate for n is round

(
1

0.25
− 1

)
= 3, which is perfect! Note that we basically combined 3 distinct

elements instances with h1, h2, h3 individually from earlier, in a way that reduced the variance! The indi-
vidual estimates 0.26, 0.22, 0.27 were varying around 0.25, but their average was even closer!

Now our memory is just O(k) instead of O(1), but we get a better estimate as a result. It is up to you to
determine how you want to tradeoff these two opposing quantities.

9.5.5 Summary

We just saw today an extremely clever use of continuous RVs, applied to computing! In general, randomness
(the use of a random number generator (RNG)) in algorithms and data structures often can help improve
either the time or space (or both)! We saw earlier with the bloom filter how adding a RNG can save a ton
of space in a data structure. Even if you don’t go on to study machine learning or theoretical CS, you can
see what we’re learning can be applied to algorithms and data structures, arguably the core knowledge of
every computer scientist.

	Motivation
	Intuition
	The Algorithm
	Improving Performance (Optional)
	Summary

