CSE 312: Foundations of Computing II
Instructor: Alex Tsun
Date: 1/31/22
Lecture Topics: 4.4 Transforming Continuous RVs
[Tags: Transforming Continuous RVs]

1. Suppose $X \sim \operatorname{Exp}\left(\lambda=\frac{1}{2}\right)$ is the waiting time in hours until your pizza delivery arrives, and suppose we decide to tip $Y=g(X)=\frac{24}{X+1}$ dollars.
a. What is the range, PDF, and CDF of X ? Hint: You can look this up.
b. What is the range Ω_{Y} ?
c. Find $F_{Y}(y)$ using the CDF method, then find $f_{Y}(y)$ afterwards.
d. Find $f_{Y}(y)$ using the explicit formula, after verifying the monotonicity and invertibility criteria.
e. Set up integrals for $E[Y]$ in two ways: one with LOTUS and $f_{X}(x)$, and one with $f_{Y}(y)$. Explicitly define your limits of integration and the integrand so that one could enter your integral into WolframAlpha.

Solution:

a. Since $X \sim \operatorname{Exp}\left(\lambda=\frac{1}{2}\right)$, we have

$$
\begin{gathered}
\Omega_{X}=[0, \infty) \\
f_{X}(x)=\frac{e^{-x / 2}}{2} \text { if } x \in \Omega_{X} \\
F_{X}(x)=1-e^{-x / 2} \text { if } x \in \Omega_{X}
\end{gathered}
$$

b. When $X=0$ (the lowest value), we tip $Y=24$ dollars, and if $X \rightarrow \infty$, we tip $Y \rightarrow 0$ dollars. So the range is $\Omega_{Y}=(0,24)$.
c. Let $y \in \Omega_{Y}$. We have

$$
\begin{gathered}
F_{Y}(y)=P(Y \leq y)[\text { def of CDF] } \\
=P\left(\frac{24}{X+1} \leq y\right)[\text { def of } Y] \\
=P(24 \leq X y+y) \\
=P\left(X \geq \frac{24-y}{y}\right) \\
=1-P\left(X<\frac{24-y}{y}\right) \\
=1-P\left(X \leq \frac{24-y}{y}\right)[\operatorname{since} \mathrm{P}(\mathrm{X}=\mathrm{k})=0] \\
=1-F_{X}\left(\frac{24-y}{y}\right) \\
=1-\left(1-e^{-\frac{24-y}{2 y}}\right) \\
\quad=e^{-\frac{24-y}{2 y}}
\end{gathered}
$$

$$
f_{Y}(y)=\frac{d}{d y} e^{-\frac{24-y}{2 y}}=\frac{12 e^{-\frac{24-y}{2 y}}}{y^{2}}, \quad y \in \Omega_{Y}
$$

d. We know $\frac{1}{x+1}$ is a monotone decreasing function, so $\frac{24}{x+1}$ is as well. The inverse of g is $h(y)=$ $\frac{24-y}{y}=\frac{24}{y}-1$. We solved for this inverse as follows:

$$
\begin{gathered}
g(x)=\frac{24}{x+1}=y \\
y(x+1)=24 \\
x+1=\frac{24}{y} \\
x=\frac{24}{y}-1=h(y)
\end{gathered}
$$

We can compute $h^{\prime}(y)=-\frac{24}{y^{2}}$.
Then, the formula says

$$
f_{Y}(y)=f_{X}(h(y))\left|h^{\prime}(y)\right|=\frac{1}{2} e^{-\frac{1}{2}\left(\frac{24-y}{y}\right)} \cdot\left|-\frac{24}{y^{2}}\right|=\frac{12 e^{-\frac{24-y}{2 y}}}{y^{2}}
$$

This matches the other way as well!
e. The two ways:

By LOTUS:

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x=\int_{0}^{\infty}\left(\frac{24}{x+1}\right)\left(\frac{1}{2} e^{-\frac{1}{2} x}\right) d x
$$

By definition of expectation:

$$
E[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{24} y\left(\frac{12 e^{-\frac{24-y}{2 y}}}{y^{2}}\right) d y
$$

[Bonus!]
2. Suppose $X \sim \operatorname{Unif}(-1,1)$ (continuous), then find the PDF of $Y=X^{2}$. (Hint: Use the CDF method; why does the explicit formula not work in this case?).

Since $X \sim$ Unif $(-1,1)$ we know that its CDF of X is:

$$
F_{X}(x)=\frac{x+1}{2}
$$

and the range of X is:

$$
\Omega_{Y}=[-1,1]
$$

so the range of $Y=X^{2}$ is:

$$
\Omega_{Y}=[0,1]
$$

Then, we can find the CDF of Y by doing the following:

$$
\begin{gathered}
F_{Y}(y)=P(Y \leq y) \\
=P\left(X^{2} \leq y\right) \\
=P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) \\
=\frac{\sqrt{y}+1}{2}-\frac{-\sqrt{y}+1}{2} \\
=\sqrt{y}
\end{gathered}
$$

We can differentiate the CDF to get the PDF. That is:

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} \sqrt{y} \\
= & \frac{1}{2 \sqrt{y}}
\end{aligned}
$$

So, for the final PDF we have:

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{1}{2 \sqrt{y}} & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

