CSE 312: Foundations of Computing II Instructor: Alex Tsun Date: 1/31/22

Lecture Topics: 4.4 Transforming Continuous RVs

[Tags: Transforming Continuous RVs]

- 1. Suppose $X \sim Exp\left(\lambda = \frac{1}{2}\right)$ is the waiting time in hours until your pizza delivery arrives, and suppose we decide to tip $Y = g(X) = \frac{24}{X+1}$ dollars.
 - a. What is the range, PDF, and CDF of X? Hint: You can look this up.
 - b. What is the range Ω_Y ?
 - c. Find $F_Y(y)$ using the CDF method, then find $f_Y(y)$ afterwards.
 - d. Find $f_Y(y)$ using the explicit formula, after verifying the monotonicity and invertibility criteria.
 - e. Set up integrals for E[Y] in two ways: one with LOTUS and $f_X(x)$, and one with $f_Y(y)$. Explicitly define your limits of integration and the integrand so that one could enter your integral into WolframAlpha.

Solution:

a. Since $X \sim Exp\left(\lambda = \frac{1}{2}\right)$, we have

$$\Omega_X = [0, \infty)$$

$$f_X(x) = \frac{e^{-x/2}}{2} \text{ if } x \in \Omega_X$$

$$F_X(x) = 1 - e^{-x/2} \text{ if } x \in \Omega_X$$

- b. When X = 0 (the lowest value), we tip Y = 24 dollars, and if $X \to \infty$, we tip $Y \to 0$ dollars. So the range is $\Omega_Y = (0, 24)$.
- c. Let $y \in \Omega_Y$. We have

$$F_{Y}(y) = P(Y \le y) \text{ [def of CDF]}$$

$$= P\left(\frac{24}{X+1} \le y\right) \text{ [def of Y]}$$

$$= P(24 \le Xy + y)$$

$$= P\left(X \ge \frac{24-y}{y}\right)$$

$$= 1 - P\left(X < \frac{24-y}{y}\right)$$

$$= 1 - P\left(X \le \frac{24-y}{y}\right) \text{ [since } P(X = k) = 0\text{]}$$

$$= 1 - F_{X}\left(\frac{24-y}{y}\right)$$

$$= 1 - \left(1 - e^{-\frac{24-y}{2y}}\right)$$

$$= e^{-\frac{24-y}{2y}}$$

$$f_Y(y) = \frac{d}{dy}e^{-\frac{24-y}{2y}} = \frac{12 \ e^{-\frac{24-y}{2y}}}{y^2}, \quad y \in \Omega_Y$$

d. We know $\frac{1}{X+1}$ is a monotone decreasing function, so $\frac{24}{X+1}$ is as well. The inverse of g is $h(y) = \frac{24-y}{y} = \frac{24}{y} - 1$. We solved for this inverse as follows:

$$g(x) = \frac{24}{x+1} = y$$
$$y(x+1) = 24$$
$$x+1 = \frac{24}{y}$$
$$x = \frac{24}{y} - 1 = h(y)$$

We can compute $h'(y) = -\frac{24}{y^2}$.

Then, the formula says

$$f_Y(y) = f_X(h(y))|h'(y)| = \frac{1}{2}e^{-\frac{1}{2}\left(\frac{24-y}{y}\right)} \cdot \left|-\frac{24}{y^2}\right| = \frac{12}{y^2}e^{-\frac{24-y}{2y}}$$

This matches the other way as well!

e. The two ways:

By LOTUS:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx = \int_{0}^{\infty} \left(\frac{24}{x+1}\right) \left(\frac{1}{2}e^{-\frac{1}{2}x}\right) dx$$

By definition of expectation:

$$E[Y] = \int_{-\infty}^{\infty} y f_Y(y) dy = \int_{0}^{24} y \left(\frac{12 \ e^{-\frac{24-y}{2y}}}{y^2}\right) dy$$

[Bonus!]

2. Suppose $X \sim Unif(-1,1)$ (continuous), then find the PDF of $Y = X^2$. (Hint: Use the CDF method; why does the explicit formula not work in this case?).

Since $X \sim Unif(-1,1)$ we know that its CDF of X is:

$$F_X(x) = \frac{x+1}{2}$$

and the range of X is:

$$\Omega_Y = [-1,1]$$

so the range of $Y = X^2$ is:

 $\Omega_Y = [0,1]$

Then, we can find the CDF of Y by doing the following:

$$F_{Y}(y) = P(Y \le y)$$

= $P(X^{2} \le y)$
= $P(-\sqrt{y} \le X \le \sqrt{y})$
= $F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$
= $\frac{\sqrt{y} + 1}{2} - \frac{-\sqrt{y} + 1}{2}$
= \sqrt{y}

We can differentiate the CDF to get the PDF. That is:

$$f_Y(y) = \frac{d}{dy}\sqrt{y}$$
$$= \frac{1}{2\sqrt{y}}$$

So, for the final PDF we have:

$$f_{Y}(y) = \begin{cases} \frac{1}{2\sqrt{y}} & 0 \le y \le 1\\ 0 & otherwise \end{cases}$$