CSE 312: Foundations of Computing II Instructor: Alex Tsun Date: 2/2/22 Lecture Topics: 5.1 Joint Discrete Distributions

[Tags: Joint PMFs, Marginal PMFs, Expectation]

- 1. Suppose we flip a fair coin three times independently. Let X be the number of heads in the first two flips, and Y be the number of heads in the last two flips (there is overlap).
 - a. What distribution do *X* and *Y* have marginally, and what are their ranges?
 - b. What is $p_{X,Y}(x, y)$? Hint: Fill in the margins first representing the marginal distributions!
 - c. What is $\Omega_{X,Y}$?
 - d. Write a formula for $E[\cos(XY)]$.
 - e. Are *X* and *Y* independent?

Solution:

- a. Marginally, $X, Y \sim Bin\left(2, \frac{1}{2}\right)$ with range $\Omega_X = \Omega_Y = \{0, 1, 2\}$.
- b. I filled in the table first with (2,2), (0,0), (2,0), (0,2) and used the marginal requirements to fill in the rest.

$X \setminus Y$	0	1	2	Σ
0	1/8	1/8	0	1/4
1	1/8	1/4	1/8	1/2
2	0	1/8	1/8	1/4
Σ	1/4	1/2	1/4	1

- c. So the joint range is $\Omega_{X,Y} = (\Omega_X \times \Omega_Y) \setminus \{(0,2), (2,0)\}.$
- d. $E[\cos(XY)] = \sum_{x} \sum_{y} \cos(xy) p_{X,Y}(x, y).$
- e. No $p_X(2) > 0$, $p_Y(0) > 0$ so $p_X(2) \cdot p_Y(0) > 0$ yet $p_{X,Y}(2,0) = 0$.

[Tags: Joint PMFs, Marginal PMFs, Expectation]

- 2. Let X be the roll of a fair 3-sided die. We then flip a fair coin X times independently; let Y be the number of heads.
 - a. What are Ω_X and Ω_Y ? What is $\Omega_{X,Y}$? What is X's marginal distribution?
 - b. What is $p_{X,Y}(x, y)$? Hint: Fill in the margins for X!
 - c. What is $p_Y(y)$?
 - d. Write a formula for $E\left[\frac{X}{Y^2+1}\right]$.
 - e. Are X and Y independent?

Solution:

- a. We have $\Omega_X = \{1,2,3\}$ and $\Omega_Y = \{0,1,2,3\}$.
- b. I filled out this table one row at a time, top to bottom.

$X \setminus Y$	0	1	2	3	Σ
1	1/6	1/6	0	0	1/3
2	1/12	1/6	1/12	0	1/3
3	1/24	1/8	1/8	1/24	1/3
Σ					1

We did solved for each of these by solving:

$$P(X = x, Y = y) = P(Y = y | X = x)P(X = x) = {\binom{x}{y}}{\left(\frac{1}{2}\right)^{x}} \cdot \frac{1}{3}$$

This is because we have $\frac{1}{3}$ chance of getting any of the values for *X*. Then whatever we will look for *Y* heads out of *X* coin flips.

c. The solving for bottom margin we have:

$X \setminus Y$	0	1	2	3	Σ
1	1/6	1/6	0	0	1/3
2	1/12	1/6	1/12	0	1/3
3	1/24	1/8	1/8	1/24	1/3
Σ	7/24	11/24	5/24	1/24	1

Which in all gives us:

$$p_Y(y) = \begin{cases} 7/24 & y = 0\\ 11/24 & y = 1\\ 5/24 & y = 2\\ 1/24 & y = 3 \end{cases}$$

d. By LOTUS,

$$E\left[\frac{X}{Y^{2}+1}\right] = \sum_{x} \sum_{y} \frac{x}{y^{2}+1} p_{X,Y}(x,y)$$

e. No again! The joint range isn't the product of the marginals.