CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/7/22
Lecture Topics: 5.3 Conditional Distributions
[Tags: Conditional Expectation, Law of Total Expectation]

1. Suppose $X \sim \operatorname{Unif}(0,1)$ (continuous uniform). We repeatedly draw iid $Y_{1}, Y_{2}, Y_{3}, \ldots \sim \operatorname{Unif}(0,1)$ (continous uniform) until the first random time T that $Y_{T}<X$. What is $E[T]$?

We could try to find the PMF of T using the LTP, after determining $\Omega_{T}=\{1,2,3, \ldots\}$, but that's no fun. The PDF of X is actually:

$$
f_{X}(x)=\left\{\begin{array}{c}
\frac{1}{1-0}=1, \quad 0 \leq x \leq 1 \\
0, \quad 0>x, 1<x
\end{array}\right.
$$

So, we actually only need to integrate from 0 to 1 and the PDF of X will be 1 .
Given $\mathrm{X}=\mathrm{x}$, then the probability that $\mathrm{T}=\mathrm{t}$ will be $x(1-x)^{t-1}$ because the probability of getting something that is less than x is x which will happen once (at the end) and the probability of getting something greater than x is $1-x$ which will happen $\mathrm{t}-1$ times. So, we have:

$$
\begin{gathered}
P(T=t)=\int_{0}^{1} P(T=t \mid X=x) f_{X}(x) d x=\int_{0}^{1} x(1-x)^{t-1} \cdot 1 d x=\left[-\frac{(1-x)^{t}(t x+1)}{t(t+1)} x^{t}\right]_{0}^{1} \\
=\frac{0}{t(t+1)}-\left(-\frac{1}{(t) t+1}\right)=\frac{1}{t(t+1)}
\end{gathered}
$$

Which gives us:

$$
E[T]=\sum_{t=1}^{\infty} t p_{T}(t)=\sum_{t=1}^{\infty} t \frac{1}{t(t+1)}=\sum_{t=1}^{\infty} \frac{1}{t+1}=\infty
$$

Alternatively and preferably, by LTE, we have that $(T \mid X=x) \sim G e o(x)$, so $E[T \mid X=x]=\frac{1}{x}$.

$$
E[T]=\int_{0}^{1} E[T \mid X=x] f_{X}(x) d x=\int_{0}^{1} \frac{1}{x} d x=\infty
$$

[Tags: PSet4 Q1a, Conditional Distributions]
2. Suppose $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(m, p)$ are independent, and let $Z=X+Y$. What is the conditional PMF $P(X=k \mid Z=z)$? Actually, $X \mid Z=Z$ is a parametrized distribution we know. What is its name and what are its parameter(s)? (Hint: You know the distribution of Z, and can look up its PMF!)

Solution: Watch lecture ().
[Tags: Law of Total Probability/Expectation, Conditional Expectation]
3. Suppose the number of radioactive particles emitted in an hour are $X \sim \operatorname{Poi}(\lambda)$. You have a device which records each particle emission with probability p (ideally close to 1), independent of other particles. Let Y be the number of particles actually observed by the device. What is $E[Y]$?

Solution:

Note that $(Y \mid X=x) \sim \operatorname{Bin}(x, p)$, so $E[Y \mid X=x]=x p$.

$$
\begin{gathered}
E[Y]=\sum_{x=0}^{\infty} E[Y \mid X=x] p_{X}(x)[\mathrm{LTE}] \\
=\sum_{x=0}^{\infty} x p \cdot p_{X}(x) \\
=p \sum_{x=0}^{\infty} x p_{X}(x) \\
=p E[X] \\
=p \lambda
\end{gathered}
$$

Sometimes, people write LTE as $E[Y]=E_{X}\left[E_{Y \mid X}[Y \mid X]\right]$, which is supposed to equal

$$
\sum_{x \in \Omega_{X}} E_{Y \mid X}[Y \mid X=x] p_{X}(x)
$$

And so, $Y \mid X \sim \operatorname{Bin}(X, p)$ (just another way to write $(Y \mid X=x) \sim \operatorname{Bin}(x, p)$), and so $E_{Y \mid X}[Y \mid X]=X p$,

$$
E[Y]=E_{X}\left[E_{Y \mid X}[Y \mid X]\right],=E_{X}[X p]=p E_{X}[X]=p \lambda
$$

I don't like this notation though!

