## CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/9/22
Lecture Topics: 5.4 Covariance and Correlation
[Tags: Covariance]

1. The covariance matrix of a random vector $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$ is defined to the $n \times n$ matrix $\Sigma$ such that $\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$. Don't be too intimidated - it's just a way to store all the information we need - we won't be doing any linear algebra with it! The examples will help © .
$\Sigma=\left[\begin{array}{cccc}\operatorname{Cov}\left(Z_{1}, Z_{1}\right)=\operatorname{Var}\left(Z_{1}\right) & \operatorname{Cov}\left(Z_{1}, Z_{2}\right) & \ldots & \operatorname{Cov}\left(Z_{1}, Z_{n}\right) \\ \operatorname{Cov}\left(Z_{2}, Z_{1}\right) & \operatorname{Cov}\left(Z_{2}, Z_{2}\right)=\operatorname{Var}\left(Z_{2}\right) & \ldots & \operatorname{Cov}\left(Z_{2}, Z_{n}\right) \\ \vdots & \ddots & \ddots & \vdots \\ \operatorname{Cov}\left(Z_{n}, Z_{1}\right) & \ldots & \ldots & \operatorname{Cov}\left(Z_{n}, Z_{n}\right)=\operatorname{Var}\left(Z_{n}\right)\end{array}\right]$
a. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be iid (independent and identically distributed) random variables with mean $\mu$ and variance $\sigma^{2}$. Let $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ be a random vector with the rvs $X_{i}$ as its components. What is the $(4 \times 4)$ covariance matrix of $\boldsymbol{X}$ ?
b. Define $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)$ as follows.

- $Y_{1}=X_{1}+X_{2}$
- $Y_{2}=X_{2}+X_{3}$
- $Y_{3}=X_{3}+X_{4}$.

What is the $(3 \times 3)$ covariance matrix of $\boldsymbol{Y}$ ?
[Tags: Similar to PSet4 Q3, Covariance]
2. Suppose we throw 12 balls independently and uniformly into 7 bins. For $i=1, \ldots, 7$, let $X_{i}$ be the indicator/Bernoulli rv of whether bin $i$ is empty. Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{7}\right)$ be the random vector of indicators.
a. What is the covariance matrix of $\boldsymbol{X}$ ?
b. Let $Y=\sum_{i=1}^{7} X_{i}$ be the number of empty bins. What is $\operatorname{Var}(Y)$ ?

