CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/9/22
Lecture Topics: 5.4 Covariance and Correlation
[Tags: Covariance]

1. The covariance matrix of a random vector $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$ is defined to the $n \times n$ matrix Σ such that $\sum_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$. Don't be too intimidated - it's just a way to store all the information we need - we won't be doing any linear algebra with it! The examples will help \odot.

$$
\Sigma=\left[\begin{array}{cccc}
\operatorname{Cov}\left(Z_{1}, Z_{1}\right)=\operatorname{Var}\left(Z_{1}\right) & \operatorname{Cov}\left(Z_{1}, Z_{2}\right) & \ldots & \operatorname{Cov}\left(Z_{1}, Z_{n}\right) \\
\operatorname{Cov}\left(Z_{2}, Z_{1}\right) & \operatorname{Cov}\left(Z_{2}, Z_{2}\right)=\operatorname{Var}\left(Z_{2}\right) & \ldots & \operatorname{Cov}\left(Z_{2}, Z_{n}\right) \\
\vdots & \ddots & \ddots & \vdots \\
\operatorname{Cov}\left(Z_{n}, Z_{1}\right) & \ldots & \ldots & \operatorname{Cov}\left(Z_{n}, Z_{n}\right)=\operatorname{Var}\left(Z_{n}\right)
\end{array}\right]
$$

a. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be iid (independent and identically distributed) random variables with mean μ and variance σ^{2}. Let $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ be a random vector with the rvs X_{i} as its components. What is the (4×4) covariance matrix of \boldsymbol{X} ?
b. Define $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)$ as follows.

- $Y_{1}=X_{1}+X_{2}$
- $Y_{2}=X_{2}+X_{3}$
- $Y_{3}=X_{3}+X_{4}$.

What is the (3×3) covariance matrix of \boldsymbol{Y} ?

Solution:

a. We have an 4×4 matrix where we need to handle the diagonal and off-diagonal separately. We have $\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for each $i=1, \ldots, 4$, so the diagonal is all σ^{2}. However, for $i \neq j, \operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ since they are independent rvs. Hence, our covariance matrix is

$$
\left[\begin{array}{cccc}
\sigma^{2} & 0 & 0 & 0 \\
0 & \sigma^{2} & 0 & 0 \\
0 & 0 & \sigma^{2} & 0 \\
0 & 0 & 0 & \sigma^{2}
\end{array}\right]=\sigma^{2} I_{4}
$$

b. The diagonals are

$$
\operatorname{Cov}\left(Y_{i}, Y_{i}\right)=\operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}\left(X_{i}+X_{i+1}\right)=\operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(X_{i+1}\right)=2 \sigma^{2}
$$

(variance adds for independent rvs X_{i} and X_{i+1}).
Then

$$
\begin{gathered}
\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right)[\text { def of } Y] \\
=\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)[\text { like FOIL }] \\
=0+0+\sigma^{2}+0=\sigma^{2}
\end{gathered}
$$

We also have this equal to $\operatorname{Cov}\left(Y_{2}, Y_{1}\right)$ because covariance ignores order. Also, note this is equal to $\operatorname{Cov}\left(Y_{2}, Y_{3}\right)$ and $\operatorname{Cov}\left(Y_{3}, Y_{2}\right)$ as well by symmetry.

Finally, $\operatorname{Cov}\left(Y_{1}, Y_{3}\right)=\operatorname{Cov}\left(X_{1}+X_{2}, X_{3}+X_{4}\right)=0$ since $X_{1}+X_{2}$ is independent of $X_{3}+X_{4}$! Putting this all together gives:

$$
\left[\begin{array}{ccc}
\operatorname{Var}\left(Y_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(Y_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{3}, X_{1}\right) & \operatorname{Cov}\left(X_{3}, X_{2}\right) & \operatorname{Var}\left(Y_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
2 \sigma^{2} & \sigma^{2} & 0 \\
\sigma^{2} & 2 \sigma^{2} & \sigma^{2} \\
0 & \sigma^{2} & 2 \sigma^{2}
\end{array}\right]
$$

[Tags: Similar to PSet4 Q4, Covariance]

2. Suppose we throw 12 balls independently and uniformly into 7 bins. For $i=1, \ldots, 7$, let X_{i} be the indicator/Bernoulli rv of whether bin i is empty. Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{7}\right)$ be the random vector of indicators.
a. What is the covariance matrix of \boldsymbol{X} ?
b. Let $Y=\sum_{i=1}^{7} X_{i}$ be the number of empty bins. What is $\operatorname{Var}(Y)$?

Solution:

a.

We have $X_{i} \sim \operatorname{Ber}\left(p=\left(\frac{6}{7}\right)^{12}\right)$ as the probability a particular bin is empty. Then, $E\left[X_{i}\right]=p$ and $\operatorname{Var}\left(X_{i}\right)=p(1-p) \approx 0.13253432$. So that gives us the diagonal entries.

To find $\operatorname{Cov}\left(X_{i}, X_{j}\right)$ for $i \neq j$, we need to compute $\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]$. But, the range of the product of 1 's and $0^{\prime} s X_{i} X_{j}$ is just $\Omega_{X_{i} X_{j}}=\{0,1\}$, so $X_{i} X_{j} \sim \operatorname{Ber}(q)$ for some q.

Hence $E\left[X_{i} X_{j}\right]=P\left(X_{i} X_{j}=1\right)=P\left(X_{i}=1, X_{j}=1\right)=P($ bins i and j are both empty $)=\left(\frac{5}{7}\right)^{12}$ and

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=\left(\frac{5}{7}\right)^{12}-\left(\frac{6}{7}\right)^{12}\left(\frac{6}{7}\right)^{12} \approx-0.0071
$$

Hence the covariance matrix has $\Sigma_{i i} \approx 0.13253432$ and $\Sigma_{i j} \approx-0.0071$.
b. We have that

$$
\begin{aligned}
& \operatorname{Var}(Y)=\operatorname{Cov}(Y, Y) \\
= & \operatorname{Cov}\left(\sum_{i=1}^{7} X_{i}, \sum_{i=1}^{7} X_{j}\right) \\
= & \sum_{i=1}^{7} \sum_{j=1}^{7} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

$$
\begin{gathered}
=\sum_{i=1}^{7} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
\approx 7 \cdot 0.13253432+2\binom{7}{2}(-0.0071) \approx 0.62954
\end{gathered}
$$

