CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/11/22
Lecture Topics: 5.7 Limit Theorems
[Tags: CLT]

1. Use the CLT to approximate the following probabilities. Don't forget to apply the continuity correction (only if necessary).
a. Suppose we roll a fair 10 -sided die until we get 100 sevens. What is the probability it takes at least 1050 rolls until this happens?
b. Let X be the sum of 10,000 real numbers, and Y be the same sum, but with each number rounded to the nearest integer before summing. If the fractions rounded off are independent and each one is uniformly distributed over $(-0.5,+0.5)$, use the Central Limit Theorem to estimate the probability that $|X-Y|>50$. Noticing that $|X-Y|$ could have been as great as 5,000 , look at your answer and think about what it says. (As a small example with sums of 4 real numbers, suppose that $X=3.2+1.92+(-3.6)+$ 5.7. Then Y would be the sum of each of those terms when rounded to the nearest integer: $Y=3+2+(-4)+6=7$. So, $|X-Y|=1.3$. The fractions rounded off in this case are $(0.2,-0.08,0.4,-0.3)$ and the assumption is that these fractions are independent and uniformly distributed in the real interval $(-0.5,+0.5)$.
[Tags: CLT, Law of Total Expectation]
2. Megha has a health condition that requires unpredictable amounts of medication. Every day, there is a 20% chance that she feels perfectly fine and requires no medicine. Otherwise, she needs to take a dose of medication. The necessary dose is equally likely to be any value in the continuous range 1 to 5 ounces. How much medicine she needs on any given day is independent of all other days. Megha's insurance will fully cover 90 ounces of medicine for each 30 -day period. What is the probability that 90 ounces will be enough for the next 30 days? Make your life easier by using Central Limit Theorem.
