## CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/11/22
Lecture Topics: 5.7 Limit Theorems

## [Tags: CLT]

1. Use the CLT to approximate the following probabilities. Don't forget to apply the continuity correction (only if necessary).
a. Suppose we roll a fair 10 -sided die until we get 100 sevens. What is the probability it takes at least 1050 rolls until this happens?
b. Let $X$ be the sum of 10,000 real numbers, and $Y$ be the same sum, but with each number rounded to the nearest integer before summing. If the fractions rounded off are independent and each one is uniformly distributed over $(-0.5,+0.5)$, use the Central Limit Theorem to estimate the probability that $|X-Y|>50$. Noticing that $|X-Y|$ could have been as great as 5,000 , look at your answer and think about what it says. (As a small example with sums of 4 real numbers, suppose that $X=3.2+1.92+(-3.6)+$ 5.7. Then $Y$ would be the sum of each of those terms when rounded to the nearest integer: $Y=3+2+(-4)+6=7$. So, $|X-Y|=1.3$. The fractions rounded off in this case are $(0.2,-0.08,0.4,-0.3)$ and the assumption is that these fractions are independent and uniformly distributed in the real interval $(-0.5,+0.5)$.

## Solution:

a. We know that $X \sim \operatorname{NegBin}\left(r=100, p=\frac{1}{10}\right)$, so $E[X]=\frac{r}{p}=1000$ and $\operatorname{Var}(X)=$ $\frac{r(1-p)}{p^{2}}=9000$. By the CLT, $X \approx N\left(\mu=1000, \sigma^{2}=9000\right)$ since we have the sum of 100 iid Geometric rvs. We have to apply the continuity correction since we are approximating a discrete distribution (NegBin) with a continuous one (Normal).

$$
\begin{gathered}
P(X \geq 1050)=P(X \geq 1049.5)=1-P(X \leq 1049.5) \\
=1-P\left(\frac{X-1000}{\sqrt{9000}} \leq \frac{1049.5-1000}{\sqrt{9000}}\right) \\
=1-P(Z \leq 0.52178)=1-\Phi(0.52)=1-0.6985=0.3015
\end{gathered}
$$

Imagine summing that Negative Binomial PMF...yuckkk
b. Let $R_{1}, \ldots . R_{n} \sim \operatorname{Unif}(-0.5,+0.5)$ be the roundoff errors $(n=10,000)$. Then,

$$
E\left[R_{i}\right]=\frac{a+b}{2}=\frac{-0.5+0.5}{2}=0 \quad \operatorname{Var}\left(R_{i}\right)=\frac{(0.5-(-0.5))^{2}}{12}=\frac{1}{12}
$$

Hence, $R=\sum_{i=1}^{n} R_{i}$ has $E[R]=0$ and $\operatorname{Var}(R)=\frac{10000}{12}$. By the CLT, $R \approx N\left(\mu=0, \sigma^{2}=\frac{10000}{12}\right)$.
Note we don't use a continuity correction here since we are approximating a continuous variable.

$$
P(|R|>50)=P(R>50)+P(R<-50)
$$

$$
\begin{aligned}
& =2 P(R>50) \approx 2 P\left(\frac{R-0}{\sqrt{\frac{10000}{12}}} \geq \frac{50-0}{\sqrt{\frac{10000}{12}}}\right) \\
= & 2 P(Z \geq 1.732)=2(1-\Phi(1.732))=0.0832
\end{aligned}
$$

[Tags: CLT, Law of Total Expectation]
2. Megha has a health condition that requires unpredictable amounts of medication. Every day, there is a $20 \%$ chance that she feels perfectly fine and requires no medicine. Otherwise, she needs to take a dose of medication. The necessary dose is equally likely to be any value in the continuous range 1 to 5 ounces. How much medicine she needs on any given day is independent of all other days. Megha's insurance will fully cover 90 ounces of medicine for each 30 -day period. What is the probability that 90 ounces will be enough for the next 30 days? Make your life easier by using Central Limit Theorem.

## Solution:

Let $X_{1}, \ldots, X_{30}$ be the amount of medicine she needs per day. Let $D_{1}, \ldots, D_{30}$ be the event she needs a dose on day $i$.

$$
E\left[X_{i}\right]=E\left[X_{i} \mid D_{i}\right] P\left(D_{i}\right)+E\left[X_{i} \mid D_{i}^{C}\right] P\left(D_{i}^{C}\right)=\left(\frac{1+5}{2}\right) \cdot 0.8+0 \cdot 0.2=2.4
$$

By LOTUS:

$$
E\left[X_{i}^{2}\right]=E\left[X_{i}^{2} \mid D_{i}\right] P\left(D_{i}\right)+E\left[X_{i}^{2} \mid D_{i}^{C}\right] P\left(D_{i}^{C}\right)=\left(\int_{1}^{5} x^{2} \frac{1}{4} d x\right) 0.8+0 \cdot 0.2 \approx 8.267
$$

Hence, $\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2} \approx 8.267-2.4^{2}=2.507$
The total dosage is $X=\sum_{i=1}^{30} X_{i}$, so $E[X]=30 \cdot 2.4=72$ and $\operatorname{Var}(X)=30 \cdot 2.507=75.21$. By the CLT, since $X$ is the sum of iid variables, $X \approx N\left(\mu=72, \sigma^{2}=75.21\right)$, and

$$
P(X<90)=P\left(\frac{X-72}{\sqrt{75.21}}<\frac{90-72}{\sqrt{75.21}}\right) \approx P(Z \leq 2.0755)=\Phi(2.0755) \approx 0.98
$$

