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1. Suppose 𝑥 = (𝑥1, … , 𝑥𝑛) are iid samples from 𝒩(𝜃1, 𝜃2) where 𝜃1 is the mean and 𝜃2 is the 

variance (both unknown). Let 𝜃 = (𝜃1, 𝜃2) denote the parameter vector. 

a. What are the likelihood and log-likelihood of the data? 

b. What are the maximum likelihood estimates for 𝜃1, 𝜃2? 
 
Solution:  

a. The likelihood is 
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Recall log properties: log(𝑎𝑏) = log(𝑎) + log(𝑏) and log(𝑎𝑏) = 𝑏 log 𝑎. The log-likelihood is 
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b. We’ll take the partial derivatives with respect to (wrt) 𝜃1 and 𝜃2 (don’t forget the chain rule) 
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Setting this to 0, we get 
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Now, with respect to 𝜃2, 
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Setting this to 0, we get 
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We also need to check that this is in fact a maximum, since the first derivative will only give us a critical 
point. This is a bit out of scope for this class and it’s prerequisites because we are using a multivariate 
function, so don’t feel like you need to understand it, but we are including it in case you are curious and as 
a reminder that we need to always check that a point is in fact a maximum!  
 

We will use 𝑙(𝜃1, 𝜃2) as shorthand for our log-likelihood function. We need to take the second derivatives 
which gives us the following: 
 

For the second derivative in respect to 𝜃1twice: 
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For the second derivative in respect to 𝜃2 twice: 
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And for the second derivative in respect to the first and second: 
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So,  

|𝐻| = (−)(−) − 02 =  + > 0 
 

and since the second derivative in respect to 𝜃1 twice and 𝜃2 twice are negative, we have a local maximum.  
 
 
 
 
 
 


