CSE 312: Foundations of Computing II
Instructor: Alex Tsun
Date: 2/18/22
Lecture Topics: 7.1 Maximum Likelihood Estimation, 7.2 MLE Examples

[Tags: MLE]
1. Suppose X = (Xy, ..., Xy,) are iid samples from V' (61, 6, ) where 6 is the mean and 6, is the

variance (both unknown). Let 8 = (84, ;) denote the parameter vector.

a.  What are the likelihood and log-likelihood of the data?
b. What are the maximum likelihood estimates for 81, 8,?

Solution:
a. The likelihood is
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Recall log properties: log(ab) = log(a) + log(b) and log(ab) = bloga. The log-likelihood is
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b. We’ll take the partial derivatives with respect to (wrt) 87 and 8, (don’t forget the chain rule)
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Setting this to 0, we get

Now, with respect to 6,
n
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Setting this to 0, we get



We also need to check that this is in fact a maximum, since the first derivative will only give us a critical
point. This is a bit out of scope for this class and it’s prerequisites because we are using a multivariate
function, so don’t feel like you need to understand it, but we are including it in case you are curious and as
a reminder that we need to always check that a point is in fact a maximum!

We will use [(6, 6,) as shorthand for our log-likelihood function. We need to take the second derivatives
which gives us the following:

For the second derivative in respect to 8; twice:
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For the second derivative in respect to 8 twice:
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And for the second derivative in respect to the first and second:
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So
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and since the second derivative in respect to 8 twice and 8, twice are negative, we have a local maximum.



