CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/18/22
Lecture Topics: 7.1 Maximum Likelihood Estimation, 7.2 MLE Examples
[Tags: MLE]

1. Suppose $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ are iid samples from $\mathcal{N}\left(\theta_{1}, \theta_{2}\right)$ where θ_{1} is the mean and θ_{2} is the variance (both unknown). Let $\theta=\left(\theta_{1}, \theta_{2}\right)$ denote the parameter vector.
a. What are the likelihood and \log-likelihood of the data?
b. What are the maximum likelihood estimates for θ_{1}, θ_{2} ?

Solution:
a. The likelihood is

$$
L(x \mid \theta)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \theta_{2}}} \exp \left(\frac{-\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}\right)=\prod_{i=1}^{n}\left(2 \pi \theta_{2}\right)^{-1 / 2} \exp \left(\frac{-\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}\right)
$$

Recall \log properties: $\log (a b)=\log (a)+\log (b)$ and $\log \left(a^{b}\right)=b \log a$. The log-likelihood is

$$
\ln L(x \mid \theta)=\ln \left(\prod_{i=1}^{n}\left(2 \pi \theta_{2}\right)^{-\frac{1}{2}} \exp \left(\frac{-\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}\right)\right)=\sum_{i=1}^{n}\left(-\frac{1}{2} \ln \left(2 \pi \theta_{2}\right)-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}\right)
$$

b. We'll take the partial derivatives with respect to (wrt) θ_{1} and θ_{2} (don't forget the chain rule)

$$
\frac{\partial}{\partial \theta_{1}} \ln L(x \mid \theta)=\sum_{i=1}^{n}\left(\frac{2\left(x_{i}-\theta_{1}\right)}{2 \theta_{2}}\right)=\frac{1}{\theta_{2}}\left(\sum_{i=1}^{n} x_{i}-n \theta_{1}\right)
$$

Setting this to 0 , we get

$$
\frac{1}{\hat{\theta}_{2}}\left(\sum_{i=1}^{n} x_{i}-n \hat{\theta}_{1}\right)=0 \rightarrow \sum_{i=1}^{n} x_{i}-n \hat{\theta}_{1}=0 \rightarrow \hat{\theta}_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Now, with respect to θ_{2},

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{2}} \ln L(x \mid \theta)=\sum_{i=1}^{n}\left(-\frac{1}{2} \frac{1}{2 \pi \theta_{2}} 2 \pi+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}\right)=\sum_{i=1}^{n}\left(-\frac{1}{2 \theta_{2}}+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}\right) \\
=-\frac{n}{2 \theta_{2}}+\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}\right)
\end{gathered}
$$

Setting this to 0 , we get

$$
\begin{gathered}
-\frac{n}{2 \hat{\theta}_{2}}+\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\hat{\theta}_{1}\right)^{2}}{2 \hat{\theta}_{2}^{2}}\right)=0 \rightarrow n \hat{\theta}_{2}=\sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2} \\
\hat{\theta}_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}
\end{gathered}
$$

We also need to check that this is in fact a maximum, since the first derivative will only give us a critical point. This is a bit out of scope for this class and it's prerequisites because we are using a multivariate function, so don't feel like you need to understand it, but we are including it in case you are curious and as a reminder that we need to always check that a point is in fact a maximum!

We will use $l\left(\theta_{1}, \theta_{2}\right)$ as shorthand for our log-likelihood function. We need to take the second derivatives which gives us the following:

For the second derivative in respect to θ_{1} twice:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial \theta_{1}^{2}} l\left(\theta_{1}, \theta_{2}\right)=-\frac{n}{\theta_{2}} \\
\frac{\partial^{2}}{\partial \theta_{1}^{2}} l\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=-\frac{n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}}<0
\end{gathered}
$$

For the second derivative in respect to θ_{2} twice:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial \theta_{2}^{2}} l\left(\theta_{1}, \theta_{2}\right)=\frac{n}{2 \theta_{2}^{2}}-\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\theta_{1}\right)^{2}}{\theta_{2}^{3}}\right) \\
\frac{\partial^{2}}{\partial \theta_{2}^{2}} l\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=-\left(\frac{n^{3}}{\left(\sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}\right)^{2}}\right)<0
\end{gathered}
$$

And for the second derivative in respect to the first and second:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{2}} l\left(\theta_{1}, \theta_{2}\right)=-\frac{1}{\theta_{2}^{2}}\left(\sum_{i=1}^{n} x_{i}-n \theta_{1}\right) \\
\frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{2}} l\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=0
\end{gathered}
$$

So,

$$
|H|=(-)(-)-0^{2}=+>0
$$

and since the second derivative in respect to θ_{1} twice and θ_{2} twice are negative, we have a local maximum.

