CSE 312: Foundations of Computing II

Instructor: Alex Tsun
Date: 2/23/22
Lecture Topics: 7.3 Method of Moments Estimation, 7.4 Beta/Dirichlet Distributions
[Tags: Estimation]

1. Suppose $X=\left(x_{1}, \ldots, x_{n}\right)$ are iid samples from the following distributions. Estimate the parameter(s) using your favorite technique (MLE or MoM). Hint: Use MoM.
a. The $\operatorname{Gamma}(r, \lambda)$ distribution. Estimate both r and λ.
b. The Rayleigh (σ) distribution with density $f_{X}(x ; \sigma)=\frac{x}{\sigma^{2}} e^{-x^{2} / 2 \sigma^{2}}, x \geq 0$ with expectation $\sigma \sqrt{\frac{\pi}{2}}$.
[Tags: Beta/Dirichlet]
2. Suppose we roll a (possibly unfair) 4 -sided die 29 times. Then, the number of times each digit appears is $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \sim \operatorname{Mult}_{4}(n=29, \boldsymbol{p})$, where $\boldsymbol{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is unknown. We happened to observe 5 ones, 7 twos, 6 threes, and 11 fours.
a. A $\operatorname{Beta}\left(\alpha_{1}, \beta_{1}\right)$ rv would be suitable to model our belief on p_{1} (the probability of rolling a one) with what parameters α_{1}, β_{1} ?
b. A $\operatorname{Beta}\left(\alpha_{2}, \beta_{2}\right)$ rv would be suitable to model our belief on p_{2} (the probability of rolling a two) with what parameters α_{2}, β_{2} ?
c. Let's instead say we wanted to jointly model all the unknown parameters \boldsymbol{p}. A
$\operatorname{Dirichlet}(\boldsymbol{\gamma})$ would be suitable, more efficient than modelling all four separately, and also enforce that $\sum_{i=1}^{4} p_{i}=1$. Which parameter vector $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$ would best model our belief?
