CSE 312: Foundations of Computing II
 Instructor: Alex Tsun
 Date: 1/10/22

Lecture Topics: 2.1 Discrete Probability, 2.2 Conditional Probability
[Tags: Bayes Theorem, Law of Total Probability]

1. Sometimes, doctors run tests to see if we have a disease, but they might not be perfectly accurate. Suppose we are testing for the llama-flu, a highly contagious new disease. So far, only 0.1% of the population has it. If you have llama-flu, the probability the test is negative is 2%. If you don't have llama-flu, the probability the test is negative is 95%. The most important question after all of this: if you test positive, what is the probability you have llama-flu?
[Tags: Equally Likely Outcomes, Bayes Theorem, Law of Total Probability]
2.

Suppose we have three urns with the following number of red, white, and blue balls in them:

Urn	Red	White	Blue
A	6	5	2
B	4	3	6
C	5	6	7

Suppose we choose an urn by the following rules, after flipping a fair coin three times independently:
(a) If all flips are the same, pick from Urn A
(b) If there is exactly one head, pick from Urn B
(c) Else, pick from Urn C

After choosing an urn, we draw 5 balls without replacement, and let R be the event that exactly three of them are red. Let A, B, C be the events we chose urn $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively. What is the probability we chose urn C , given that we drew exactly three of the five balls being red? We'll solve this in three steps.
(a) First, find $\operatorname{Pr}(A), \operatorname{Pr}(B), \operatorname{Pr}(C)$.
(b) Now find $\operatorname{Pr}(R)$, and do not simplify.
(c) Finally, compute $\operatorname{Pr}(C \mid R)$, and do not simplify.

For more examples and solutions (S01 and S02), see
https://courses.cs.washington.edu/courses/cse312/18sp/.

