Lecture Topics: 2.3 Independence, 3.1 Discrete Random Variables Basics
[Tags: Independence, Random Variables, PMFs, Expectation, PSet2 Q8 (Similar)]

1. There are 3 people in Alex's family; his mom, dad, and sister. Each family member decides whether or not they want to come to lunch in his social-distancing home restaurant, independently of the others.

- Mom wants to come with probability 0.8 .
- Dad wants to come with probability 0.6.
- Sister wants to come with probability 0.1 .

Unfortunately, if all 3 of them want to come, he must turn one of them away $*$ since the restaurant capacity is 2 guests. Otherwise, he will take everyone that comes. Let X be the number of customers that Alex serves at lunch.
a. What is the range Ω_{X}, the PMF $p_{X}(k)$, and the expectation $E[X]$?
b. If he charges everyone who comes $\$ 10$, but it costs him $\$ 50$ to make all the food, what is his expected profit?

Solution:

a. The range is $\Omega_{X}=\{0,1,2\}$ since we can have anywhere from 0 to 2 people. By independence,

$$
P(X=0)=P\left(M^{C}, D^{C}, S^{C}\right)=P\left(M^{C}\right) P\left(D^{C}\right) P\left(S^{C}\right)=0.2 \cdot 0.4 \cdot 0.9=0.072
$$

$$
\begin{gathered}
P(X=1)=P\left(M, D^{C}, S^{C}\right)+P\left(M^{C}, D, S^{C}\right)+P\left(M^{C}, D^{C}, S\right) \\
=0.8 \cdot 0.4 \cdot 0.9+0.2 \cdot 0.6 \cdot 0.9+0.2 \cdot 0.4 \cdot 0.1=0.404 \\
P(X=2)=1-P(X=0)-P(X=1)=0.524 \\
p_{X}(k)= \begin{cases}0.072, & k=0 \\
0.404, & k=1 \\
0.524, & k=2\end{cases} \\
E[X]=\sum_{k \in \Omega_{X}} k \cdot p_{X}(k)=0 \cdot 0.072+1 \cdot 0.404+2 \cdot 0.524=1.452
\end{gathered}
$$

b. The profit is $P=10 X-50$, so $E[P]=E[10 X-50]=10 E[X]-50=14.52-$ $50=-35.48$.
[Tags: Chain Rule, Inclusion-Exclusion]
2. Suppose n people sit around a table. Each person orders a different dish, but the waiter did not mark positions unfortunately. He has the correct n dishes, but gives a random dish to each person
(each of the n ! assignments is equally likely). What is the probability that no one has the dish they ordered placed in front of them?

Solution: See yesterday's recitation recording!

