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[Tags: PSet2 Q1, Zoo of Discrete RVs] 

1. Match the following to the most appropriate distribution (from the Zoo of Discrete RVs), including 
parameters (e.g., your answer should be in the form like NegBin(30, 0.2), or Poi(100) for 
example). Distributions may be used more than once or not at all. Suppose there are B blue fish, R 
red fish, G green fish in a pond, where B + R + G = N. You do not need to show work for this 
problem. 

a. How many of the next 10 fish I catch are green, if I catch and release. 
b. How many fish I had to catch until my first blue fish, if I catch and release. 
c. How many red fish I catch in the next five minutes, if I catch on average r red fish per 

minute, if I catch and release. 
d. Whether or not my next fish is blue, if I catch and release. 
e. How many fish I had to catch until my fourth red fish, if I catch and release. 
f. How many blue fish I caught in one scoop of a net containing M fish. 

 

Solution: Watch lecture ☺  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



[Tags: Binomial RV, Geometric RV, Negative Binomial RV] 
2. Suppose Sammy the Beginner Tennis Player must practice his one-handed backhand in tennis. His 

goal is to hit them like Roger Federer does, so he does 1000 practice swings every day. 

a. Sammy misses the ball every time he swings with probability 0.8, independently of other 
swings. If he does manage to hit the ball with his swing, the probability it actually goes over 

the net is 0.1. What is the probability that when a ball comes, he hits it over the net? 

b. A day is a “huge success” if he hits it over the net at least fifty times that day. What is the 
probability of a huge success? 

c. Let 𝑝 be your answer from part (b), the probability a single day is a huge success. Let 𝑋 be 
the number of days he takes up to and including his first huge success. What is the PMF of 

𝑋, 𝑝𝑋(𝑘)? 

d. Let 𝑌 be the number of days up to and including his ninth huge success. What is the PMF 

of 𝑌, 𝑝𝑌(𝑘)?  

e. What is 𝐸[𝑌]? (Hint: 𝐸[𝑋] =
1

𝑝
 from part (c). Try using linearity of expectation!) 

 
Solution: 

a. Let 𝑀 be the event he misses, and 𝑁 be the event it goes over the net. Then,  

𝑃(𝑁) = 𝑃(𝑀𝐶 ∩ 𝑁) = 𝑃(𝑀𝐶)𝑃(𝑁|𝑀𝐶) = 0.2 ⋅ 0.1 = 0.02 

b. Let 𝑋 be the number of times he hits it over the net in a day. Then, 𝑋~𝐵𝑖𝑛(𝑛 = 1000, 𝑝 =

0.02), so  

𝑃(𝑋 ≥ 50) = ∑ (
1000

𝑘
)0.02𝑘(1 − 0.02)1000−𝑘

1000

𝑘=50

 

c. The first 𝑘 − 1 trials must be failures and the last trial is a huge success. So  

𝑝𝑋(𝑘) = (1 − 𝑝)𝑘−1𝑝 

d. In the first 𝑘 − 1 trials, he must get 8 huge successes and 𝑘 − 9 failures (these can happen in any 
order). Then he must finish with a huge success. Hence, 

𝑝𝑌(𝑘) = (
𝑘 − 1

9 − 1
)𝑝8(1 − 𝑝)𝑘−9 ⋅ 𝑝 = (

𝑘 − 1

8
) 𝑝9(1 − 𝑝)𝑘−9 

e. Then 𝑌 = 𝑋1 +⋯+𝑋9 where 𝑋𝑖 is the number of trials up to and including the 𝑖𝑡ℎ huge success 

from the (𝑖 − 1)st  huge success. Each 𝑋𝑖 has the same distribution as in part (c) with 𝐸[𝑋𝑖] =
1

𝑝
, 

so 𝐸[𝑌] = ∑ 𝐸[𝑋𝑖]
9
𝑖=1 = 9 ⋅

1

𝑝
=

9

𝑝
. 

 
 
 
 
 
 
 
 
 
 
 



[Tags: Zoo of Discrete RVs] 
3. Suppose you are working at Amazon, and you are unfortunately on-call for your team the entire 

year (that means, you are the person that they may ping in the middle of the night to debug issues). 
There are 5 SWE’s on your team (including yourself), and each person independently introduces 
on average 0.1 bugs per work-week (Mon-Fri).  

a. What is the probability of having a bug-free work-week? 
b. What is the probability of having a bug-free day? What’s the relationship between your 

answer to this part and the previous part? 
c. What is the probability that in a (52-week) year, that there are at least 40 bug-free weeks? 
d. Suppose it’s the first Monday of the year. When would you expect the first day where you 

had to debug (at least) one issue (in number of work-days from today)? 
e. Suppose it’s the first Monday of the year. What is the probability that your tenth day of 

debugging happens in February or later (> 20 work-days from now)? 
 
Solution: 

a. The number of bugs in a week in total is 𝑋~𝑃𝑜𝑖(0.5) since we add 5 independent 𝑃𝑜𝑖(0.1) rvs. 

Then, 

𝑃(𝑋 = 0) = 𝑒−0.5
0.50

0!
= 𝑒−0.5 ≈ 0.60653 

 

b. The number of bugs in a day in total is 𝑌~𝑃𝑜𝑖(0.1) since we add 5 independent 𝑃𝑜𝑖(0.02) rvs. 
Then, 

𝑃(𝑌 = 0) = 𝑒−0.1
0.10

0!
≈ 0.90484 

 

c. The number of bug-free weeks in a year is 𝑍~𝐵𝑖𝑛(52, 0.60653). So 

𝑃(𝑍 ≥ 40) = ∑ (
52

𝑘
)0.60653𝑘(1 − 0.60653)52−𝑘

52

𝑘=40

 

d. The days until the first bug is 𝑊~𝐺𝑒𝑜(𝑝 = 1 − 0.90484). Hence, 𝐸[𝑊] =
1

𝑝
=

1

0.09516
≈

10.508. 

e. The days until the tenth bug is 𝑊~𝑁𝑒𝑔𝐵𝑖𝑛(10, 0.09516). Hence, 
 

𝑃(𝑊 > 20) = ∑ (
𝑘 − 1

10 − 1
)0.0951610(1 − 0.09516)𝑘−10

∞

𝑘=21

 

Alternatively and equivalently, we can ask the probability that we had < 10 bug-free days in the first 20 

days. The number of days with bugs in the first 20 days is 𝑉~𝐵𝑖𝑛(20, 0.09516), so 

𝑃(𝑉 < 10) = ∑(
20

𝑘
)0.09516𝑘(1 − 0.09516)20−𝑘

9

𝑘=0

 

 
 
 
 



[Tags: Zoo of Discrete RVs] 

4. Suppose we have a hash function ℎ:𝒰 → {0,1,… ,𝑚 − 1} which maps from a universe 𝒰 of 

strings (with length < 100) into 𝑚 buckets, with each string independently and equally likely to be 

hashed into any bucket.  We want to insert 𝑛 strings 𝑠1, … , 𝑠𝑛 into our hash table. 

a. Let 𝑋1 = ℎ(𝑠1) be the index of the bucket that string 𝑠1 hashes into. What distribution 

does 𝑋1 have from our zoo? 

b. What is the probability that two particular strings 𝑠1 and 𝑠2 hash to the same bucket? 

c. If 𝑌1 is the number of strings in the first bucket after inserting all 𝑛 strings, what 

distribution does 𝑌1 have from our zoo? What is the probability that the first bucket is 
empty? 

d. What is the expected number of empty buckets? 
 
Solution: 
 

a. 𝑋1~𝑈𝑛𝑖𝑓(0,𝑚 − 1). 

b. 𝑃(𝑋1 = 𝑋2) =
1

𝑚
 since the first string hashes to some bucket, and the probability that the second 

string also hashes to that bucket is just 
1

𝑚
. 

c. 𝑌1~𝐵𝑖𝑛 (𝑛,
1

𝑚
), so 𝑃(𝑌1 = 0) = (1 −

1

𝑚
)
𝑛

. 

d. Let 𝑍0, … , 𝑍𝑚−1 be indicator rvs which are 1 if the 𝑖𝑡ℎ bucket is empty and 0 otherwise. Notes 

that 𝑃(𝑍𝑖 = 1) = 𝑃(𝑌𝑖 = 0), since the probability that a bucket is empty is the same as the 
probability it has zero strings in it. Then, 

𝐸[𝑍𝑖] = 𝑃(𝑍𝑖 = 1) = (1 −
1

𝑚
)
𝑛

 

Hence, if 𝑍 = ∑ 𝑍𝑖
𝑚−1
𝑖=0  is the number of empty buckets, then  

𝐸[𝑍] = ∑ 𝐸[𝑍𝑖]

𝑚−1

𝑖=0

= 𝑚(1 −
1

𝑚
)
𝑛

 

 
 


